ImageVerifierCode 换一换
格式:PPT , 页数:67 ,大小:2.15MB ,
资源ID:1790836      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1790836.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(P15第十五章空间插值.ppt)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

P15第十五章空间插值.ppt

1、第十五章、空间插值第十五章、空间插值Spatial Interpolation空间插值的基本原理空间插值方法1精选课件空间插值导言空间插值导言n地理学中可能遇到的问题:n了解北京大气质量宏观分布n北京大气质量监测点n了解我国某个地区的气候状况n气象站分布温度降水n某观测站因意外存在缺测、漏测n解决问题的难点:n到研究区每个点进行观测是非常困难的时间、人力或财力都不允许。2精选课件第一节、空间插值的基本原理1.空间插值的概念空间插值的概念2.空间插值的理论假设空间插值的理论假设3.空间插值意义空间插值意义4.空间插值分类空间插值分类5.一般插值过程一般插值过程6.插值方法选择的原则插值方法选择的

2、原则7.插值插值验证验证8.空间插值的数据取样空间插值的数据取样3精选课件一、空间插值的概念一、空间插值的概念将空间上离散点的测量数据转换为连续的曲面数据,即填补样本点之间的数据空白,以便与其它空间现象的分布进行建模研究。已知数据函数关系式未知数据从存在的观测数据中找到一个函数关系式,使该关系式最好的逼近这些已知的空间数据,并能根据函数关系式推求出区域范围内其它任意点的值。4精选课件二、空间插值的理论假设二、空间插值的理论假设距离衰减效应空间位置上越靠近的点,越可能具有相似的观察值;而距离越远的点,其特征值相似的可能性越小。地理学第一定律5精选课件三、空间插值意义三、空间插值意义缺值估计缺值估

3、计 如何在没有测点的地区得到我们需要的数据?测点自然或人为的原因,缺少某天或某个时间段的数据。内插等值线内插等值线形象直观的显示空间数据分布平面制图数据格网化数据格网化以不规则点图元组织的Z变量的数据,并不适合于图形显示,也不适于进行分析。多数空间分析要求将Z值转换成一个规则间距空间格网,或者转换成不规则三角形网。规则格网数据更好的显示空间数据连续分布6精选课件四、空间插值分类四、空间插值分类 1.整体插值和局部插值;2.确定性插值和地统计插值;3.精确插值和近似插值。7精选课件1、整体插值和局部插值整体插值:用研究区所有采样点数据进行全区特征拟合。整个区域的数据都会影响单个插值点,单个数据点

4、变量值的增加、减少或者删除,都对整个区域有影响。典 型 例 子 是:全 局 趋 势 面 分 析 、Fourier Series(周期序列)8精选课件局部内插法局部内插法局部内插法只使用邻近的数据点来估计未知点的值,步骤如下:定义一个邻域或搜索范围;搜索落在此邻域范围的数据点;选择能表达这有限个点空间变化的数学函数;为未知的数据点赋值。局部内插方法:样条函数插值法距离倒数插值Kriging插值(空间自由协方差最佳内插)单个数据点的改变只影响其周围有限的数据点。9精选课件整体插值方法将小尺度的、局部的变化看作随机和非结构性噪声,从而丢失了这一部分信息。局部插值方法恰好能弥补整体插值方法的缺陷。整体

5、插值方法通常不直接用于空间插值,而是用来检测总趋势和不同于总趋势的最大偏离部分,即剩余部分,在去除了宏观趋势后,可用剩余残差来进行局部插值。整体插值注意的问题整体插值注意的问题10精选课件2、确定性方法和地统计方法、确定性方法和地统计方法确定性方法基于未知点周围点的值和特定的数学公式,来直接产生平滑的曲面;11精选课件地统计学插值地统计学插值基于自相关性(测量点的统计关系),根据测量数据的统计特征产生曲面;由于建立在统计学的基础上,因此不仅可以产生预测曲面,而且可以产生误差和不确定性曲面,用来评估预测结果的好坏多种 kriging 方法12精选课件3、精确插值和近似插值、精确插值和近似插值精确

6、插值:产生通过所有观测点的曲面。精确插值:产生通过所有观测点的曲面。在精确插值中,插值点落在观测点上,内插值等于估计值。近似插值:插值产生的曲面不通过所有观测近似插值:插值产生的曲面不通过所有观测点。点。当数据存在不确定性时,应该使用近似插值,由于估计值替代了已知变量值,近似插值可以平滑采样误差。13精选课件五、一般插值过程五、一般插值过程内插方法(模型)的选择;空间数据的探索性分析,包括对数据的均值、方差、协方差、独立性和变异函数的估计等;进行内插;内插结果评价;重新选择内插方法,直到合理;内插生成最后结果。14精选课件六、插值方法选择的原则六、插值方法选择的原则精确性:参数的敏感性:许多的

7、插值方法都涉及到一个或多个参数,如距离反比法中距离的阶数等。有些方法对参数的选择相当敏感,而有些方法对变量值敏感。后者对不同的数据集会有截然不同的插值结果。希望找到对参数的波动相对稳定,其值不过多地依赖变量值的插值方法。耗时:一般情况下,计算时间不是很重要,除非特别费时。存储要求:同耗时一样,存储要求不是决定性的。特别是在计算机的主频日益提高,内存和硬盘越来越大的情况下,二者都不需特别看重。可视化、可操作性(插值软件选择):三维的透视图等。15精选课件七、插值验证七、插值验证(1)交叉验证交叉验证 交叉验证法(crossvalidation),首先假定每一测点的要素值未知,而采用周围样点的值来

8、估算,然后计算所有样点实际观测值与内插值的误差,以此来评判估值方法的优劣。各种插值方法得到的插值结果与样本点数据比较。(2)“实际实际”验证验证 将部分已知变量值的样本点作为“训练数据集”,用于插值计算;另一部分样点“验证数据集”,该部分站点不参加插值计算。然后利用“训练数据集”样点进行内插,插值结果与“训练数据集”验证样点的观测值对比,比较插值的效果。16精选课件八、八、空间插值的数据采样空间插值的数据采样 采样点的空间位置对空间插值的结果影响很大。采样点的空间位置对空间插值的结果影响很大。1)理想情况是研究区内均匀布点:但当区域景观存在有规律的空间分布模式时,用完全规则的采样网络可能会得到

9、片面的结果;2)完全随机的采样:采样点的分布位置是不相关的,完全随机采样可能会导致采样点的分布不均,一些点的数据密集,另一些点的数据缺少。3)规则采样和随机采样的结合方法是成层随机采样,即划分为规则格网,每个格网中的样本数固定,但单个点随机地分布于规则格网内。17精选课件采样方法图示采样方法图示18精选课件第二节、插值方法1.最近邻法(Nearest Neighbor)2.算术平均值(Arithmetic Mean)3.距离反比法(Inverse Distance)4.高次曲面插值(Multiquadric)5.趋势面插值(Polynomial)6.最优插值(Optimal)7.样条插值(Sp

10、line Surface)8.径向基函数插值(Radial Basis Functions)9.克里金插值(Kriging)19精选课件一、最近邻法一、最近邻法(Nearest Neighbor)(Nearest Neighbor)最近邻点法又叫泰森多边形方法。它采用一种极端的边界内插方法只用最近的单个点进行区域插值(区域赋值)。泰森多边形按数据点位置将区域分割成子区域,每个子区域包含一个数据点,各子区域到其内数据点的距离小于任何到其它数据点的距离,并用其内数据点进行赋值。20精选课件公式公式21精选课件最近邻法最近邻法评价评价特征:用泰森多边形插值方法得到的结果图变化只发生在边界上,在边界内

11、都是均质的和无变化的;适用于较小的区域内,变量空间变异性也不很明显的情况。符合人思维习惯,距离近的点比距离远的点更相似,对插值点的影响也更明显;最近邻法插值的优点是不需其他前提条件,方法简单,效率高;缺点是受样本点的影响较大,只考虑距离因素,对其他空间因素和变量所固有的某些规律没有过多地考虑。实际应用中,效果常不十分理想。22精选课件二二、算术平均值、算术平均值(Arithmetic Mean)算术平均值方法以区域内所有测值的平均值来估计插值点的变量值(Creutin,1982)。23精选课件算术平均值法评价算术平均值法评价 算术平均值的算法比较简单,容易实现。但只考虑算术平均,根本没有顾及其

12、他的空间因素,这也是其一个致命的弱点,因而在实际应用中效果不理想。24精选课件三、距离反比法三、距离反比法(Inverse(Inverse Distance)Distance)距离反比插值方法最早由 Shepard 提出(Richard Franke,1982)提出的,并逐步得到发展。每个采样对插值结果的影响随距离增加而减弱,因此距目标点近的样点赋予的权重较大。25精选课件距离反比插值公式距离反比插值公式权重系数wj的计算是关键问题,不同类型距离反比法的差别就是权重系数的计算公式不同,因而最后的插值结果也有细微的差别。26精选课件距离反比权重系数的确定距离反比权重系数的确定27精选课件ARCG

13、ISIDW28精选课件权重过高,较近点的影响较大,拟合表面更细致(不光滑);权重过低,较远点的影响增加,拟合表面更光滑。缺省值常为 2。控制反距离加权的参数控制反距离加权的参数权重权重29精选课件1)搜索半径固定搜索半径固定 对固定型半径,搜索距离一定,所有在该半径内的样点参与计算。可预先设定一个阈值,当给定半径内搜索到的点小于该值时可扩大搜索半径,直到达到该阈值为止。2)搜索半径类型可变搜索半径类型可变 设定参与计算的样点数是固定的,则搜索的半径是可变的。这样对每个插值点的搜索半径可能都不同,因为要达到规定的点数所需要搜索的区域是不一样的。控制反距离加权的参数控制反距离加权的参数搜索半径搜索

14、半径30精选课件可利用一线状和面状数据集来限制样点的搜索。线状数据集可作为平坦地表的悬崖或脊状障碍物:只有位于同侧的样点才符合要求。控制反距离加权的参数控制反距离加权的参数障碍障碍设置设置31精选课件权重系数和搜索半径的影响图示权重系数和搜索半径的影响图示Power=2,search=230Power=2,search=150Power=2,search=600Power=4,search=60032精选课件距离反比插值评价距离反比插值评价优点简便易行;可为变量值变化很大的数据集提供一个合理的插值结果;不会出现无意义的插值结果而无法解释。不足对权重函数的选择十分敏感;易受数据点集群的影响,结果

15、常出现一种孤立点数据明显高于周围数据点的“鸭蛋”分布模式;全局最大和最小变量值都散布于数据之中。距离反比很少有预测的特点,内插得到的插值点数据在样点数据取值范围内。33精选课件四、四、高次曲面插值高次曲面插值(Multiquadric)高次曲面插值由 Hardy 于1971年首先提出,随后应用于不同的学科。每个样点对插值点的影响都用样点坐标函数构成的圆锥表示,插值点的变量值是所有圆锥贡献值的总和(Caruso,1998)。插值数学表达式为:其中ci 是样本点(xi,yi)的系数,dei是待估点(xe,ye)与样本点(xi,yi)的距离。34精选课件高次曲面插值评价高次曲面插值评价高次曲面插值根

16、据变量值已知点和变量值未知点的坐标所构成的圆锥,进行插值,为从离散点构建一个连续的表面提供了一个比较优秀的插值方法。由于在计算权重系数时需要已知点的距离矩阵及其逆矩阵,因而当数据点增多时,矩阵及其逆的求解都比较费时。35精选课件五、趋势面分析通常把实际的地理曲面分解为趋势面和剩余面两部分,前者反应地理要素的宏观分布规律,属于确定性因素作用的结果;而后者则对应于微观区域,被认为是随机因素影响的结果。趋势面分析的一个基本要求就是,所选择的趋势面模型应该是剩余值最小,而趋势值最大,这样拟合度精确度才能达到足够的准确性。趋势面分析是通过回归分析原理,运用最小二乘法拟合一个二维非线性函数,模拟地理要素在

17、空间上的分布规律,展示地理要素在地域空间上的变化趋势。在数学上,拟合数学曲面要注意两个问题:一是数学曲面类型(数学表达式)的确定,二是拟合精度的确定。36精选课件1、趋势面模型的建立设某地理要素的实际观测数据为zi(xi,yi)(i=1,2,n),趋势值拟合值为 ,则有用来计算趋势面的数学方程式有多项式函数和傅立叶级数,其中最常用的是多项式函数。因为任何一个函数都可以在一个适当的范围内用多项式来逼近,而且调整多项式的次数,可使所求的回归方程适合实际问题的需要。式中,为剩余值(残差值)37精选课件2、趋势面模型的参数估计趋势面分析的核心就是从实际观测值出发推算趋势面,一般采用回归分析方法,使得残

18、差平方和最小从而估计趋势面参数。假设二维空间中有n个观测点(xl,yl)(l=1,2,n),观测值为zl(l=1,2,n)则空间分布z的趋势面可表示为N次多项式根据最小二乘法,可得利用克莱姆法则可以求出各个参数ai38精选课件多项式回归多项式分析多项式趋势面随着N值的不同,其形态也不同。一般地讲,N值越大,拟合精度越高。拟合精度C以下式表示,通常C为6070时,该多项式就能够揭示空间趋势。一次多项式二次多项式三次多项式39精选课件3、趋势面模型的适度检验趋势面拟合适度的R2检验式中,为剩余平方和,它表示随机因素对z的离差为回归平方和,它表示p个自变量对因变量z的离差的总影响R2越大,趋势面的拟

19、合度就越高。40精选课件3、趋势面模型的适度检验(续)趋势面拟合适度的显著性F检验检验的办法是在显著性水平下,查F分布表得Fa。若计算的F值大于临界值Fa,则认为趋势面方程显著;否则,不显著。p为多项式项数(不包括常数项),41精选课件4、趋势面分析应用实例序号降水量Z/mm横坐标x/104m纵坐标y/104m127.601238.41.10.63241.80424.72.9505323.40.2655.51.81.7740.40.71.3837.50.229310.853.351031.71.653.1511532.653.11244.93.652.55上表为某流域1月份降水量与各观测点的坐

20、标位置数据42精选课件4、趋势面分析应用实例(续)1)建立趋势面模型 运用上述介绍的趋势面分析原理,首先采用二次多项式进行趋势面拟合,用最小二乘法求得拟合方程为 z=5.998+17.438x+29.787y-3.558x2+0.375xy-8.070y2 (R2=0.839,F=6.236)再采用三次趋势面进行拟合,用最小二乘法求得拟合方程为 z=-48.810+37.557x+130.130y+8.389x2-33.166xy-62.740y2-4.133x3+6.138x2y+2.566xy2+9.785y3 (R2=0.965,F=6.054)43精选课件4、趋势面分析应用实例(续)2

21、)模型检验(1)趋势面拟合适度的R2检验。结果表明,二次趋势面回归模型和三次趋势面回归模型的显著性都较高,而且三次趋势面较二次趋势面具有更高的拟合程度。(2)趋势面适度的显著性F检验。在置信水平a0.05下,查F分布表得F2aF0.05(5,6)4.53,F3aF0.05(9,2)19.4。显然,F2 F2a,而F3 F3a,故二次趋势面的回归方程显著而三次趋势面不显著。因此,F检验的结果表明,用二次趋势面进行拟合比较合理。44精选课件优点和缺点优点产生平滑的曲面;结果点很少通过原始数据点,只是对整个研究曲产生最佳拟合面;缺点高次多项式在数据区外围产生异常高值或低值45精选课件六、六、最优插值

22、最优插值(Optimal)最最优优插插值值由由GandinGandin首首先先发发表表,并并应应用用在在气气象象领领域域的的“对对象象分分析析(Objective(Objective Analysis)”Analysis)”中中,随随后后由由世世界界气气象象组组织织(World(World Meteorological Organization)Meteorological Organization)推荐使用。推荐使用。此此法法假假设设观观测测变变量量域域是是二二维维随随机机过过程程的的实实现现,此此外外,还还认认为为未未知知变变量量值值测测点点的的变变量量值值是是它它周周围围n n个个测测点

23、点变变量量值值的的线线性性组组合合(Creutin,1982)(Creutin,1982)。46精选课件最优插值数学表示式为:Ve 是待估点的变量值,是待估点的变量值,vj 是点是点 j(xj,yj)的变量值,的变量值,wj 是点是点 j(xj,yj)的权重系数。的权重系数。上式的插值误差为:var 表示误差方差。最优插值的权重系数,就是使插值误差的方差最小。47精选课件 最优插值过程最优插值过程 最优插值在计算前要求指定空间相关函数的模型及其参数,这可以由用户给出,或者给出必要的数据,由程序计算。48精选课件七、样条插值七、样条插值(Spline Surface)样条插值的目标就是寻找一表面

24、s(t),使它满足最优平滑原则,也就是说,利用样本点拟合光滑曲线,使其表面曲率最小。相当于扭曲一个橡皮,使它通过所有样点,同时曲率最小。样条函数是灵活曲线规的数学等式,为分段函数,一次拟合只有少数数据点配准,同时保证曲线段的连接处为平滑连续曲线。这就意味着样条函数可以修改曲线的某一段而不必重新计算整条曲线,插值速度快;保留了微地物特征,视觉上的满意效果。49精选课件样条插值样条插值类型类型 1)规则样条插值规则样条插值 拟合的曲面光滑、渐变,可能超出采样点的范围。权重在曲率最小化表达式中,定义曲面的3阶导权重,控制表面的平滑度。权重越大,曲面越光滑;权重必须大于或等于0,常取值为0,0.001

25、,0.01,0.1,0.5等。2)张力样条张力样条 拟合的曲面不似前者那样光滑。权重:定义张力的权重。该系数越大,拟合表面越粗糙。权重必须大于或等于0,常取值为0,1,5,10等。50精选课件样条插值样条插值插值评价插值评价 不适用于在短距离内属性有较大变化的地区,否则估计结果偏大。样条内插的误差不能直接估算,同时在实践中要解决的问题是样条块的定义以及如何在三维空间中将这些块拼成复杂曲面而又不至于引入原始曲面中所没有的异常现象等问题51精选课件八、克里金插值八、克里金插值(Kriging)克里金插值由南非采矿工程师D.G.克里格(D.G.Krige)于1951年首次提出,故命名为“克里金”法,

26、后经法国著名地理数学学家G.Matheron发展深化。52精选课件理论假设:认为任何在空间连续变化的属性既不是完全随机,也不是完全确定的。任何变量的空间变化表现为三个主要成分的和:l与恒定均值或趋势有关的结构性成分;l与空间变化有关的随机变量,即区域性变量;l与空间变化无关的随机噪声项或剩余误差项。一旦结构性成分确定后,剩余的差异变化属于同质变化,不同位置之间的差异仅是距离的函数。1 1、原理、原理Z(x)=m(x)+g(h)+e”区域性变量的特点:随机性。即局部不规则的随机性质,可以进行统计推断。随机性。即局部不规则的随机性质,可以进行统计推断。结构性。即存在某种空间自相关结构性。即存在某种

27、空间自相关,可用某一数学函数来表示。可用某一数学函数来表示。53精选课件u半方差:定量描述区域性变化的第一步,它为空间插值、优化采样方案提供了有益信息。半方差的估算公式:u半方差图:拟合后半方差图的用途是确定局部内插需要的参数2、半方差、半方差54精选课件计算标准差和半变率对于31个样本对,可以计算标准差,假定均值为0,且为正态分布=+-N(h)1i2h)Z(xiZ(xi)2N(h)15010055精选课件lag size 的影响Variogram with a lag size of 5m and a lag tolerance of 2.5m.Variogram with a lag si

28、ze of 10m and a lag tolerance of 5m.56精选课件各向异性某个方向有更高的空间自相关性存在。57精选课件58精选课件半变率图的组成块金值(c0;Nuddget):当h=0时的非零变率,由不可解释的原因引起;基台值(c0+c;sill):半变率曲线变平缓时的变率值,表明在某个距离上样本点不再存在相关性,通常等于数据集的方差;变差值(range):当基台值出现时的h值(sill 95%时的h值).重要的是原点附近半变率图的形状,越是最近的点对插值结果的影响越大。空间自相关部分:空间自相关部分:C/(c0+c)59精选课件半方差模型球面模型指数模型线性模型高斯模型6

29、0精选课件3、Kriging插值的方法式中:z0为待插入点的值;Zx为已知点的值Wx为每个点的权重值计算Wi,按采样点数据的半方差图的统计分析原理来计算。61精选课件权重的计算(三个已知点情况下)u式中:r(hij)是已知点i和j之间的半方差,r(hi0)是已知点i和未知点之间的半方差,r(hij)和r(hi0)可以通过半方差模型来求得;uWi为每个已知点的权重,是拉格朗日系数,是为了将估计误差降低到最小;u根据上式,通过解算联立方程可以计算出Wi62精选课件待插值的计算Z0=Z1W1+Z2W2+Z3W3并且通过方差测度来计算误差:63精选课件3、ArcGIS下的Kriging插值64精选课件

30、4、IDW vs.KrigingKriging 产生似乎更自然的结果,避免异常值的产生;同时能给出标准误差。65精选课件其它kriging插值n通用克里金插值:要求数据是二阶平稳的或纯平稳的n泛克立金插值:如果数据在空间上存在明显的趋势,那么,应该使用泛克立金方法进行分析n块克里金插值:对中心在X0的小区或块段进行估值n协克里金插值:协同克立格分析是一种空间数据的解释技术,其基本的思想是利用变量之间的空间相关关系进行估计或预测。按照如下的统计准则,它可能是目前最好的空间数据分析方法n要处理的问题是:有两个空间变量,如果第二个变量的分布广,采样密度更高,而第一个变量难以测定或测定的费用较高,那么,可以利用有限样本的变量之间的空间关系来改进对于第一个变量的估计。66精选课件 ESRI67精选课件

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服