ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:674.54KB ,
资源ID:1790001      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1790001.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(人教版初二数学上册压轴题质量检测试题(一)[001].doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教版初二数学上册压轴题质量检测试题(一)[001].doc

1、人教版初二数学上册压轴题质量检测试题(一)1在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点(1)当2a2+4ab+4b2+2a+10时,求A,B的坐标;(2)当a+b0时,如图1,若D与P关于y轴对称,PEDB并交DB延长线于E,交AB的延长线于F,求证:PBPF;如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CPAQ时,求APB的大小2如图1,在平面直角坐标系中,AOAB,BAO90,BO8cm,动点D从原点O出发沿x轴正方向以acm/s的速度运动,动点E也同时从原点O出发在y轴上以bcm

2、/s的速度运动,且a,b满足关系式a2+b24a2b+50,连接OD,OE,设运动的时间为t秒(1)求a,b的值;(2)当t为何值时,BADOAE;(3)如图2,在第一象限存在点P,使AOP30,APO15,求ABP3如图,中,(1)如图1,求证:;(2)如图2,请直接用几何语言写出、的位置关系_;(3)证明(2)中的结论4请按照研究问题的步骤依次完成任务【问题背景】(1)如图1的图形我们把它称为“8字形”, 请说理证明A+B=C+D 【简单应用】(2)如图2,AP、CP分别平分BAD、BCD,若ABC=20,ADC=26,求P的度数(可直接使用问题(1)中的结论) 【问题探究】(3)如图3,

3、直线AP平分BAD的外角FAD,CP平分BCD的外角BCE, 若ABC=36,ADC=16,猜想P的度数为 ;【拓展延伸】(4)在图4中,若设C=x,B=y,CAP=CAB,CDP=CDB,试问P与C、B之间的数量关系为 (用x、y表示P) ;(5)在图5中,AP平分BAD,CP平分BCD的外角BCE,猜想P与B、D的关系,直接写出结论 5如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b286+160(1)求a,b的值;(2)如图1,c为y轴负半轴上一点,连CA,过点C作CDCA,使CDCA,连BD求证:CBD45;(3)如图2,若有一等腰RtBMN,BMN90,连AN,

4、取AN中点P,连PM、PO试探究PM和PO的关系6ABC、DPC都是等边三角形(1)如图1,求证:APBD;(2)如图2,点P在ABC内,M为AC的中点,连PM、PA、PB,若PAPM,且PB2PM求证:BPBD;判断PC与PA的数量关系并证明7已知:在平面直角坐标系中,A为x轴负半轴上的点,B为y轴负半轴上的点(1)如图1,以A点为顶点、AB为腰在第三象限作等腰,若,求C点的坐标;(2)如图2,若点A的坐标为,点B的坐标为,点D的纵坐标为n,以B为顶点,BA为腰作等腰当B点沿y轴负半轴向下运动且其他条件都不变时,整式的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理出;(3)如

5、图3,若,于点F,以OB为边作等边,连接AM交OF于点N,若,请直接写出线段AM的长8【阅读材料】小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形如图1,在“手拉手”图形中,小明发现若BAC=DAE,AB=AC,AD=AE,则ABDACE【材料理解】(1)在图1中证明小明的发现【深入探究】(2)如图2,ABC和AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:BD=EC;BOC=60;AOE=60,其中正确的有_(将所有正确的序号填在横线上)【延伸应用】(3)

6、如图3,在四边形ABCD中,BD=CD,AB=BE,ABE=BDC=60,试探究A与BED的数量关系,并证明【参考答案】2(1);(2)见解析;APB22.5【分析】(1)利用非负数的性质求解即可;(2)想办法证明PBFF,可得结论;如图2中,过点Q作QFQB交PB于F,过点F作FHx轴解析:(1);(2)见解析;APB22.5【分析】(1)利用非负数的性质求解即可;(2)想办法证明PBFF,可得结论;如图2中,过点Q作QFQB交PB于F,过点F作FHx轴于H,可得等腰直角BQF,证明FQHQBO(AAS),再证明FQFP即可解决问题【详解】解:(1)2a2+4ab+4b2+2a+10,(a+

7、2b)2+(a+1)20,(a+2b)20 ,(a+1)20,a+2b0,a+10,a1,b,A(1,0),B(0,)(2)证明:如图1中,a+b0,ab,OAOB,又AOB90,BAOABO45,D与P关于y轴对称,BDBP,BDPBPD,设BDPBPD,则PBFBAP+BPA45+,PEDB,BEF90,F90EBF,又EBFABDBAOBDP45,F45+,PBFF,PBPF解:如图2中,过点Q作QFQB交PB于F,过点F作FHx轴于H可得等腰直角BQF,BOQBQFFHQ90,BQO+FQH90,FQH+QFH90,BQOQFH,QBQF,FQHQBO(AAS),HQOBOA,HOAQ

8、PC,PHOCOBQH,FQFP, 又BFQ45,APB22.5【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题3(1)a2,b1;(2)t或t8;(3)ABP105【分析】(1)将a2+b24a2b+50用配方法得出(a2)2+(b1)20,利用非负数的性质,即可得出结论;解析:(1)a2,b1;(2)t或t8;(3)ABP105【分析】(1)将a2+b24a2b+50用配方法得出(a2)2+(b1)20,利用非负数的性质,即可得出结论;(2)先由运动得出BD|82t|,再由全等三角形的性质的出货BDOE,建立方

9、程求解即可得出结论(3)先判断出OAPBAQ(SAS),得出OPBQ,ABQAOP30,AQBAPO15,再求出OAP135,进而判断出OAQBAQ(SAS),得出OQABQA15,OQBQ,再判断出OPQ是等边三角形,得出OQP60,进而求出BQP30,再求出PBQ75,即可得出结论【详解】解:(1)a2+b24a2b+50,(a2)2+(b1)20,a20,b10,a2,b1;(2)由(1)知,a2,b1,由运动知,OD2t,OEt,OB8,DB|82t|BADOAE,DBOE,|82t|t,解得,t(如图1)或t8(如图2);(3)如图3,过点A作AQAP,使AQAP,连接OQ,BQ,P

10、Q,则APQ45,PAQ90,OAB90,PAQOAB,OAB+BAPPAQ+BAP,即:OAPBAQ,OAAB,ADAD,OAPBAQ(SAS),OPBQ,ABQAOP30,AQBAPO15,在AOP中,AOP30,APO15,OAP180AOPAPO135,OAQ360OAPPAQ13590135OAP,OAAB,ADAD,OAQBAQ(SAS),OQABQA15,OQBQ,OPBQ,OQOP,APQ45,APO15,OPQAPO+APQ60,OPQ是等边三角形,OQP60,BQPOQPOQABQA60151530,BQPQ,PBQ(180BQP)75,ABPABQ+PBQ30+75105

11、【点睛】本题是三角形综合题,主要考查了配方法、非负数的性质、三角形内角和定理、等边三角形的判定和性质、全等三角形的判定及性质,构造出全等三角形是解题的关键4(1)见解析;(2);(3)见解析【分析】(1)根据垂直的定义可得ADC=E=90,根据余角的性质可得ACD=BAE,然后根据AAS即可证得结论;(2)由于要得出、的位置关系,结解析:(1)见解析;(2);(3)见解析【分析】(1)根据垂直的定义可得ADC=E=90,根据余角的性质可得ACD=BAE,然后根据AAS即可证得结论;(2)由于要得出、的位置关系,结合图形可猜想:;(3)如图,作CPAC于点C,延长FD交CP于点P,先证明BAEF

12、CP,可得3=P,AB=CP,然后证明ACDPCD,可得4=P,进一步即可推出4+2=90,问题得证【详解】解:(1)证明:,ADC=E=90,DAC+ACD=90,DAC+BAE=90,ACD=BAE,在DAC和EBA中,ADC=E,ACD=BAE,AC=AB,(AAS);(2)结合图形可得:;故答案为:;(3)证明:如图,作CPAC于点C,延长FD交CP于点P,AF=CE,AE=CF,1=2,BAE=FCP=90,BAEFCP,3=P,AB=CP,ABC=ACB=45,PCP=90,AB=CP,FCD=45,AC=PC,ACB=PCD,CD=CD,ACDPCD,4=P,3=P,3=4,3+

13、2=90,4+2=90,AGE=90,即【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定和性质,正确添加辅助线、熟练掌握全等三角形的判定和性质是解题的关键5(1)见解析;(2)P=23;(3)P=26;(4)P=;(5)P=【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到1=2,3=4,列方解析:(1)见解析;(2)P=23;(3)P=26;(4)P=;(5)P=【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到1=2,3=4,列方程组即可得到结论;(3)由AP平分BAD的外角FAD,CP平分BCD的外角BCE,推出1=2,

14、3=4,推出PAD=180-2,PCD=180-3,由P+(180-1)=D+(180-3),P+1=B+4,推出2P=B+D,即可解决问题;(4)根据题意得出B+CAB=C+BDC,再结合CAP=CAB,CDP=CDB,得到y+(CAB-CAB)=P+(BDC-CDB),从而可得P=y+CAB-CAB-CDB+CDB=;(5)根据题意得出B+BAD=D+BCD,DAP+P=PCD+D,再结合AP平分BAD,CP平分BCD的外角BCE,得到BAD+P=BCD+(180-BCD)+D,所以P=90+BCD-BAD +D=.【详解】解:(1)证明:在AOB中,A+B+AOB=180,在COD中,C

15、+D+COD=180,AOB=COD,A+B=C+D;(2)解:如图2,AP、CP分别平分BAD,BCD,1=2,3=4,由(1)的结论得:,+,得2P+2+3=1+4+B+D,P=(B+D)=23;(3)解:如图3,AP平分BAD的外角FAD,CP平分BCD的外角BCE,1=2,3=4,PAD=180-2,PCD=180-3,P+(180-1)=D+(180-3),P+1=B+4,2P=B+D,P=(B+D)=(36+16)=26;故答案为:26;(4)由题意可得:B+CAB=C+BDC,即y+CAB=x+BDC,即CAB-BDC=x-y,B+BAP=P+PDB,即y+BAP=P+PDB,即

16、y+(CAB-CAP)=P+(BDC-CDP),即y+(CAB-CAB)=P+(BDC-CDB),P=y+CAB-CAB-CDB+CDB= y+(CAB-CDB)=y+(x-y)=故答案为:P=;(5)由题意可得:B+BAD=D+BCD,DAP+P=PCD+D,B-D=BCD-BAD,AP平分BAD,CP平分BCD的外角BCE,BAP=DAP,PCE=PCB,BAD+P=(BCD+BCE)+D,BAD+P=BCD+(180-BCD)+D,P=90+BCD-BAD +D=90+(BCD-BAD)+D=90+(B-D)+D=,故答案为:P=.【点睛】本题考查三角形内角和,三角形的外角的性质、多边形

17、的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型6(1)a4,b4;(2)见解析;(3)MPOP,MPOP,理由见解析【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可解析:(1)a4,b4;(2)见解析;(3)MPOP,MPOP,理由见解析【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可;(2)如图1(见解析),作于E易证,由三角形全等的性质得,再证明是等腰直角三角形即可;(3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM

18、,延长MN交AO于C证出和,再利用全等三角形的性质证明是等腰直角三角形即可.【详解】(1)由绝对值的非负性和平方数的非负性得:解得:;(2)如图1,作于E是等腰直角三角形,;(3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C在四边形MCOB中,是等腰直角三角形是等腰直角三角形.【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键.7(1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得M

19、K=PM,连接C解析:(1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接CK证明AMPCMK(SAS),推出MP=MK,AP=CK,APM=K=90,再证明PDBPCK(SSS),可得结论;结论:PC=2PA想办法证明DPB=30,可得结论(1)证明:如图1中,ABC,CDP都是等边三角形,CB=CA,CD=CP,ACB=DCP=60,BCD=ACP,在BCD和ACP中,BCDACP(SAS),BD=AP;(2)证明:如图2中,延长PM到K,使得MK=PM,连接CKAPPM,

20、APM=90,在AMP和CMK中,AMPCMK(SAS),MP=MK,AP=CK,APM=K=90,同法可证BCDACP,BD=PA=CK,PB=2PM,PB=PK,PD=PC,PDBPCK(SSS),PBD=K=90,PBBD解:结论:PC=2PAPDBPCK,DPB=CPK,设DPB=CPK=x,则BDP=90-x,APC=CDB,90+x=60+90-x,x=30,DPB=30,PBD=90,PD=2BD,PC=PD,BD=PA,PC=2PA【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,直角三角形30角的性质等知识,解题的关键是学会添加常用辅助线,关注全等

21、三角形解决问题8(1)(2)整式的值不发生变化其值为(3)【分析】(1)过点作于点,可以证明,由,再由条件就可以求出的坐标;(2)过点作于点,可以证明,则有为定值,从而可以得出结论的值不变为;解析:(1)(2)整式的值不发生变化其值为(3)【分析】(1)过点作于点,可以证明,由,再由条件就可以求出的坐标;(2)过点作于点,可以证明,则有为定值,从而可以得出结论的值不变为;(3)在上截取,连接,证明,由全等三角形的性质得出由等腰三角形的性质可得出结论(1)解:如图1,过点作于点, ,等腰直角三角形,;(2)解:整式的值不会变化理由如下:如图2,过点作于点,等腰直角三角形,当点沿轴负半轴向下运动时

22、,整式的值不变,为;(3)证明:如图3,在上截取,连接,是等边三角形,为等腰直角三角形,,, ,即【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,等边三角形的性质,全等三角形的判定与性质,正确的做出辅助线并证明三角形全等是解决问题的关键9(1)见解析;(2);(3),证明见解析【分析】(1)利用等式的性质得出BADCAE,即可得出结论;(2)同(1)的方法判断出ABDACE,得出BDCE,再利用对顶角和三解析:(1)见解析;(2);(3),证明见解析【分析】(1)利用等式的性质得出BADCAE,即可得出结论;(2)同(1)的方法判断出ABDACE,得出BDCE,再利用对顶角和三角形的内

23、角和定理判断出BOC60,再判断出BCFACO,得出AOC120,进而得出AOE60,再判断出BFCF,进而判断出OBC30,即可得出结论;(3)先判断出BDC是等边三角形,得出BDBC,DBC60,进而判断出ABDEBC(SAS),由全等三角形的性质即可得出结论【详解】(1)证明:BACDAE,BACCADDAECAD,BADCAE,在ABD和ACE中,ABDACE(SAS);(2)解:如图2,ABC和ADE是等边三角形,ABAC,ADAE,BACDAE60,BADCAE,在ABD和ACE中,ABDACE(SAS),BDCE,正确,ADBAEC,记AD与CE的交点为G,AGEDGO,180A

24、DBDGO180AECAGE,DOEDAE60,BOC60,正确,在OB上取一点F,使OFOC,连接CF,OCF是等边三角形,CFOC,OFCOCF60ACB,BCFACO,ABAC,BCFACO(SAS),AOCBFC180OFC120,AOE180AOC60,正确,连接AF,要使OCOE,则有OCCE,BDCE,CFOFBD,OFBFOD,BFCF,OBCBCF,OBCBCFOFC60,OBC30,而没办法判断OBC大于30度,所以,不一定正确,即:正确的有,故答案为;(3)ABED180如图3,证明:BDC60,BDCD,BDC是等边三角形,BDBC,DBC60,ABC60DBC,ABDCBE,ABBE,ABDEBC(SAS),BECA,BEDBEC180,ABED180【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解本题的关键

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服