1、人教版中学七7年级下册数学期末综合复习题(附答案)一、选择题1如图,1和2不是同位角的是()ABCD2下列运动属于平移的是( )A汽车在平直的马路上行驶B吹肥皂泡时小气泡变成大气泡C铅球被抛出D红旗随风飘扬3在平面直角坐标系中,在第三象限的点是()A(-3,5)B(1,-2)C(-2,-3)D(1,1)4下列给出四个命题:如果两个角相等,那么它们是对顶角;如果两个角互为邻补角,那么它们的平分线互相垂直;如果两条直线垂直于同一条直线,那么这两条直线平行;如果两条直线平行于同一条直线,那么这两条直线平行其中为假命题的是()ABCD5如图,点E在BA的延长线上,能证明BECD是()AEAD=BBBA
2、D=BCDCEAD=ADCDBCD+D=1806下列说法中:立方根等于本身的是,0,1;平方根等于本身的数是0,1;两个无理数的和一定是无理数;实数与数轴上的点是一一对应的;是负分数;两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数其中正确的个数是( )A3B4C5D67如图,分别交,于点,若,则的度数为( )ABCD8如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(4,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以6个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( )A(0
3、,2)B(4,0)C(0,2)D(4,0)九、填空题9的算术平方根是_十、填空题10已知点,点关于x轴对称,则的值是_十一、填空题11如图,是的两条角平分线,则的度数为_十二、填空题12如图,ABDE,ADAB,AE平分BAC交BC于点F,如果CAD=24,则E_十三、填空题13如图,折叠宽度相等的长方形纸条,若1=54,则2=_度十四、填空题14用“”定义一种新运算:对于任意有理数a和b,规定ab=例如:(-3)2= = 2从8,7,6,5,4,3,2,1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(ab)的值,并计算ab,那么所有运算结果中的最大值是_十五、填空题15已知
4、点M在y轴上,纵坐标为4,点P(6,4),则OMP的面积是_十六、填空题16在平面直角坐标系中,已知点,且,下列结论:轴,将点A先向右平移5个单位,再向下平移个单位可得到点;若点在直线上,则点的横坐标为3;三角形的面积为,其中正确的结论是_(填序号)十七、解答题17计算:(1) (2)十八、解答题18求下列各式中的的值:(1); (2)十九、解答题19如图,点F在线段AB上,点E、G在线段CD上,ABCD(1)若BC平分ABD,D100,求ABC的度数;解:ABCD(已知),ABD+D180( )D100(已知),ABD80又BC平分ABD,(已知),ABCABD ( )(2)若12,求证:A
5、EFG(不用写依据)二十、解答题20如图所示正方形网格中,每个小正方形的边长均为1个单位,ABC的三个顶点都在格点上(1)分别写出点A、B、C的坐标;(2)将ABC向右平移6个单位长度,再向下平移4个单位长度,得到A1B1C1,其中点A的对应点是A1,点B的对应点是B1,点C的对应点是C1,请画出A1B1C1,并分别写出点A1、B1、C1的坐标;(3)求ABC的面积二十一、解答题21阅读下面的对话,解答问题: 事实上:小慧的表示方法有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如: ,即 , 的整数部分为2,小数部分为 请解答:(1) 的整数部分_,小数部分可表示为_
6、(2)已知:10-=x+y,其中x是整数,且0y1,求xy的相反数二十二、解答题22如图用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为,且面积为cm2?请说明理由二十三、解答题23综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系; (问题迁移)(2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动,当点在、(不与、重合)两点之间运动时,设,则,之间有何数量关系?
7、请说明理由若点不在线段上运动时(点与点、三点都不重合),请你画出满足条件的所有图形并直接写出,之间的数量关系二十四、解答题24(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1)请你仿照以上过程,在图2中画出一条直线b,使直线b经过点P,且,要求保留折纸痕迹,画出所用到的直线,指明结果无需写画法:在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的 线(2)已知,如图3,BE平分,CF平分求证:(写出每步的依据)二十五、解答题25在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图1,点在线段上运动时,平分.若,
8、则_;若,则_;试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由.【参考答案】一、选择题1D解析:D【分析】根据同位角的定义,“在两条被截直线的同方,截线的同侧的两个角,即为同位角”直接分析得出即可【详解】解:A、1和2是同位角,故此选项不符合题意;B、1和2是同位角,故此选项不符合题意;C、1和2是同位角,故此选项不符合题意;D、1和2不是同位角,故此选项符合题意;故选:D【点睛】此题主要考查了同位角的定义,正确掌握同位角定义是解题关键2A【分析】根据平移的定义,对选项进行一一分析,排除错误答案【详解】解:A、汽车
9、在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一分析,排除错误答案【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移,故B选项不符合;C、铅球被抛出是旋转与平移组合,故C选项不符合;D、随风摆动的红旗,不属于平移,故D选项不符合故选:A【点睛】此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等3C【分析】根据第三象限点的特征,依次判断即可【详解】解:A:,因此在第
10、二象限,故错误;B:,因此在第四象限,故错误;C:,因此在第三象限,故正确;D:,因此在第一象限,故错误;故答案为:C【点睛】本题主要考查了平面直角坐标系象限的特征,熟悉掌握各象限的横纵坐标的取值范围是解题的关键4C【分析】根据两个相等的角不一定是对顶角对进行判定,根据邻补角与角平分线的性质对进行判断,根据在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行对进行判断,根据平行线的判定对进行判断【详解】解:如果两个角相等,那么它们不一定是对顶角,选项说法错误,符合题意;如果两个角互为邻补角,那么它们的平分线互相垂直,选项说法正确,不符合题意;在同一平面内,如果两条直线垂直于同一条直线,那
11、么这两条直线平行,选项说法错误,符合题意;如果两条直线平行于同一条直线,那么这两条直线平行,选项说法正确,不符合题意;故选:C【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言任何一个命题非真即假要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可5C【分析】根据平行线的判定定理对四个选项进行逐一判断即可【详解】解:A、若EAD=B,则ADBC,故此选项错误;B、若BAD=BCD,不可能得到BECD,故此选项错误;C、若EAD=ADC,可得到BECD,故此选项正确;D、若BCD+D=180,则BCAD,故此选项错误故选:C【点睛】本题考查了平
12、行线的判定定理,熟练掌握平行线的判定方法是解题的关键6A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性【详解】解:立方根等于本身的数有:,1,0,故正确;平方根等于本身的数有:0,故错误;两个无理数的和不一定是无理数,比如和的和是0,是有理数,故错误;实数与数轴上的点一一对应,故正确;是无理数,不是分数,故错误;从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故正确故选:A【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念7B【分析】根据平行线的性质和对顶角相等即可得2的度数【详解】解:,2FHD,FHD139,2
13、39故选:B【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质8A【分析】利用行程问题中的相遇问题,由于矩形的边长为8和4,物体乙是物体甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的边长为8和4,因为物体乙是物体甲的速度的3倍解析:A【分析】利用行程问题中的相遇问题,由于矩形的边长为8和4,物体乙是物体甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的边长为8和4,因为物体乙是物体甲的速度的3倍,时间相同,物体甲与物体乙的路程比为1:3,由题意知:第一次相遇物体甲与物体乙行的路程和为241,物体甲行的路程为246,物体乙行的路程为2
14、418,在DE边相遇;第二次相遇物体甲与物体乙行的路程和为242,物体甲行的路程为24212,物体乙行的路程为24236,在DC边相遇;第三次相遇物体甲与物体乙行的路程和为243,物体甲行的路程为24318,物体乙行的路程为24354,在BC边相遇;第四次相遇物体甲与物体乙行的路程和为244,物体甲行的路程为24424,物体乙行的路程为24472,在A点相遇;此时甲乙回到原出发点,则每相遇四次,两点回到出发点,202145051,故两个物体运动后的第2020次相遇地点的是点A,即物体甲行的路程为2416,物体乙行的路程为24118时,达到第2021次相遇,此时相遇点的坐标为:(0,2),故选:
15、A【点睛】本题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题九、填空题93【分析】根据算术平方根的性质解答即可【详解】解:,0.09的算术平方根是0.3故答案为:0.3【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根解析:3【分析】根据算术平方根的性质解答即可【详解】解:,0.09的算术平方根是0.3故答案为:0.3【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根十、填空题10-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可【详解】解:点,点关于x轴对称,;解得:,故答案为-
16、6【点睛】本题考查平面直解析:-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可【详解】解:点,点关于x轴对称,;解得:,故答案为-6【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数十一、填空题11140【分析】ABC中,已知A即可得到ABC与ACB的和,而BO和CO分别是ABC,ACB的两条角平分线,即可求得OBC与OCB的度数,根据三角形的内角和定理即可求解【详解析:140【分析】ABC中,已知A即可得到ABC与ACB的和,而BO和CO分别是ABC,ACB的两条角平分线,即可求得
17、OBC与OCB的度数,根据三角形的内角和定理即可求解【详解】ABC中,ABCACB180A18010080,BO、CO是ABC,ACB的两条角平分线OBCABC,OCBACB,OBCOCB(ABCACB)40,在OBC中,BOC180(OBCOCB)140故填:140【点睛】本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义十二、填空题1233【分析】由题意易得BAD=90,则有BAC=66,然后根据角平分线的定义可得BAE=33,进而根据平行线的性质可求解【详解】解:ADAB,BAD=90,C解析:33【分析】由题意易得BAD=90,则有BAC=66,然后根据角平分线的定义可得BA
18、E=33,进而根据平行线的性质可求解【详解】解:ADAB,BAD=90,CAD=24,BAC=66,AE平分BAC,BAE=CAE=33,ABDE,E=BAE=33,故答案为33【点睛】本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键十三、填空题1372【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得【详解】解:如图,长方形的两边平行,折叠,故答案为:【点睛】本题考查了平行线的性质,折叠的解析:72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得【详解】解:如图,长方形的两边平行,折叠,故
19、答案为:【点睛】本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键十四、填空题148【解析】解:当ab时,ab= =a,a最大为8;当ab时,ab=b,b最大为8,故答案为:8点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键解析:8【解析】解:当ab时,ab= =a,a最大为8;当ab时,ab=b,b最大为8,故答案为:8点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键十五、填空题15【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解【详解】解:M在y轴上,纵坐标为4,OM4,P(6,4),SOMPOM|xP|4612解析:【分析】由M
20、点的位置易求OM的长,在根据三角形的面积公式计算可求解【详解】解:M在y轴上,纵坐标为4,OM4,P(6,4),SOMPOM|xP|4612故答案为12【点睛】本题考查了三角形的面积,坐标与图形的性质,根据三角形的面积公式求解是解题的关键十六、填空题16【分析】两点纵坐标相同,得到 AB /x轴,即可判断;根据平移规律求得平移后的点的坐标,即可判断;根据两点的坐标特征可知直线BCx轴,即可判断;求得三角形的面积,即可判断解析:【分析】两点纵坐标相同,得到 AB /x轴,即可判断;根据平移规律求得平移后的点的坐标,即可判断;根据两点的坐标特征可知直线BCx轴,即可判断;求得三角形的面积,即可判断
21、【详解】解:A(-2,4),B(3,4),它们的纵坐标相同,AB /x轴,故正确;将点A 先向右平移 5 个单位,再向下平移m个单位可得到点(3,4-m),故错误;B(3,4),C(3,m),它们的横坐标相同,BC x轴,点 D 在直线BC上,点 D的横坐标为 3,故正确;点A(-2,4),B(3, 4),C(3,m),且m4,AB =5,C 点到 AB 的距离为(4-m),三角形 ABC 的面积为,故正确;故答案为:【点睛】本题考查了平行线的判定,坐标和图形变化,平移以及点的坐标特征,明确线段的位置和大小是解题的关键十七、解答题17(1)1.2;(2)【解析】试题分析:(1)、根据算术平方根
22、、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,解析:(1)1.2;(2)【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,然后进行求和得出答案.试题解析:(1)原式 (2)原式 十八、解答题18(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x的值;(2)方程利用立方根定义开立方即可求出x的值【详解】解:(1),或(2),【点睛】此题考查了解析:(1)或;(2)
23、【分析】(1)方程整理后,利用平方根定义开方即可求出x的值;(2)方程利用立方根定义开立方即可求出x的值【详解】解:(1),或(2),【点睛】此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键十九、解答题19(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析【分析】(1)根据平行线的性质求出ABD=80,再根据角平分线的定义求解即可;(2)根据平行线的性质得到1=FGC,等解析:(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析【分析】(1)根据平行线的性质求出ABD=80,再根据角平分线的定义求解即可;(2)根据平行线的性质得到1=FGC,等量代换得
24、到2=FGC,即可判定AEFG【详解】(1)ABCD(已知),ABD+D180(两直线平行,同旁内角互补),D100(已知),ABD80,又BC平分ABD(已知),ABCABD40(角平分线的定义)故答案为:两直线平行,同旁内角互补;40;角平分线的定义;(2)证明:ABCD,1FGC,又12,2FGC,AEFG【点睛】此题考查了平行线的判定与性质,熟记“两直线平行,同旁内角互补”、“两直线平行,内错角相等”、“同位角相等,两直线平行”是解题的关键二十、解答题20(1)A(3,4),B(5,2),C(2,0);(2)见解析,A1(3,0),B1(1,2),C1(4,4);(3)5【分析】(1)
25、根据点的坐标的表示方法求解;(2)根据点平移的坐标解析:(1)A(3,4),B(5,2),C(2,0);(2)见解析,A1(3,0),B1(1,2),C1(4,4);(3)5【分析】(1)根据点的坐标的表示方法求解;(2)根据点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算ABC的面积【详解】解:(1)由题意得:A(3,4),B(5,2),C(2,0);(2)如图,A1B1C1为所作,A1是经过点A(-3,)右平移6个单位长度,再向下平移4个单位长度得到的,A1(-3+6,4-4)即(3,0)同理得到B1(1,2),C1(
26、4,4);(3)ABC的面积342341225【点睛】本题主要考查了平移作图,坐标与图形,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解二十一、解答题21(1)3,;(2) 【分析】(1)先根据二次根式的性质求出的整数部分,则小数部分可求;(2)先根据二次根式的性质确定的整数部分,得出10- 的整数部分,即x值,则其小数部分可求,即y值,则x-解析:(1)3,;(2) 【分析】(1)先根据二次根式的性质求出的整数部分,则小数部分可求;(2)先根据二次根式的性质确定的整数部分,得出10- 的整数部分,即x值,则其小数部分可求,即y值,则x-y值可求【详解】解:(1), 整数
27、部分是3, 小数部分为:-3 故答案为:3,-3(2)解: 8 10- x是整数,且0y1,x=8,y= 10-8= ,x-y=的相反数为:,xy的相反数是 【点睛】本题主要考查了估算无理数的大小,代数式求值解题的关键是确定无理数的整数部分即可解决问题二十二、解答题22不能截得长宽之比为,且面积为cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可【详解】解:不能,因为大正方形纸解析:不能截得长宽之比为,且面积为cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长
28、与宽进行验证即可【详解】解:不能,因为大正方形纸片的面积为()2+()2=36(cm2),所以大正方形的边长为6cm,设截出的长方形的长为3b cm,宽为2b cm,则6b2=30,所以b=(取正值),所以3b=3=,所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的关键二十三、解答题23(1);(2),理由见解析;图见解析,或【分析】(1)作PQEF,由平行线的性质,即可得到答案;(2)过作交于,由平行线的性质,得到,即可得到答案;根据题意,可对点P进行分类讨论解析:(1);(2),理由见解析;图见解析,或【分析】(1)
29、作PQEF,由平行线的性质,即可得到答案;(2)过作交于,由平行线的性质,得到,即可得到答案;根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与同理,利用平行线的性质,即可求出答案【详解】解:(1)作PQEF,如图:,;(2);理由如下:如图,过作交于, , ; 当点在延长线时,如备用图1: PEADBC,EPC=,EPD=,; 当在之间时,如备用图2:PEADBC,EPD=,CPE=,【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系二十四、解答题24(1)见解析;垂;(2)见解析【分析】(1)过点折纸,使痕迹垂直直
30、线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;步骤(b)中,折纸实际上是在寻找过点的直线的垂线(2)先根据解析:(1)见解析;垂;(2)见解析【分析】(1)过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;步骤(b)中,折纸实际上是在寻找过点的直线的垂线(2)先根据平行线的性质得到,再利用角平分线的定义得到,然后根据平行线的判定得到结论【详解】(1)解:如图2所示:在(1)中的步骤(b)中,折纸实际上是在寻找过点的直线的垂线故答案为垂;(2)证明:平分,平分(已知),(角平分线的定义),(已知),(两直线平行,内错角相等),(等量代换),(等式性质),(内错角
31、相等,两直线平行)【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行线的性质与判定二十五、解答题25(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=C=30,FMD=解析:(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=
32、C=30,FMD=GAC=50;由三角形的内角和定理求得AFD的度数即可;已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;即可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;再由三角形的内角和定理可求得AFD=110;AFD=90+B,已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;由此可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(1
33、80-B)=90-B;再由三角形的内角和定理可得AFD=90+B;(2)AFD=90-B,已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,NDE=EDB,即可得FDM=NDE=EDB;由DE/AC,根据平行线的性质可得EDB=C,FMD=GAC;即可得到FDM=NDE=C,所以FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;再由三角形外角的性质可得AFD=FDM +FMD=90-B.【详解】(1)AG平分BAC,BAC=100,CAG=BAC=50;,C=30,EDG=C=30,FMD=GAC=50;DF平分EDB,FDM=EDG=15;AF
34、D=180-FMD-FDM=180-50-15=115;B=40,BAC+C=180-B=140;AG平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;AFD=180-(FDM +FMD)=180-70=110;故答案为115,110;AFD=90+B,理由如下:AG平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;AFD=180-(FDM +FMD)=180-(90-B)=90+B;(2)AFD=90-B,理由如下:如图,射线ED交AG于点M,AG平分BAC,DF平分EDB,CAG=BAC,NDE=EDB,FDM=NDE=EDB,DE/AC,EDB=C,FMD=GAC;FDM=NDE=C,FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;AFD=FDM +FMD=90-B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100