1、某学院毕业 设计(论文)课题 :PLC在楼宇消防系统中的应用 专 业 机电一体化技术 班级 10级3班 学生姓名 某 学生学号 指导教师 某 提交日期 某 成绩 答辩日期 答辩成绩 答辩教师 总评成绩 课题设计要求指导教师综合阅评意见平时成绩020材料成绩030指导教师内容摘要本文主要介绍火灾探测的机理、消防系统的构成以及原理。全文共分5章。第1章简要介绍消防发展的历史、国内外发展的状况、消防系统组成及选题的背景及意义。第2章讨论了火灾探测器的分类、探测原理及由此发展的各种火灾探刻器,并着重论述了离子、光电感烟及感温三种探测器。第3章介绍了控制原理。第4章论述了控制电路的选择。第5章介对消防P
2、LC控制系统的程序进行分析。 本系统将火灾报警系统及消防系统集成到一起,解决了消防自动报警系统与消防系统一直分离,难于统一控制的局面。本系统有着高可靠率、低故障的特点,能够基本满足楼宇消防系统的要求关键词:消防; 控制系统; 探测器; 可编程控制目录第一章 前言1.1 课题的背景及课题的意义11.2 国内外发展状况1第二章 探测器的原理及结构32.1 结构造型分类方法32.2 探测参数分类法32.3 使用环境分类法6第三章 控制原理介绍 73.1 可编程控制器的发展历史73.2 PLC的定义 83.3 变频器概述 14第四章 控制电路的选择 18总结 32谢辞 33参考文献 34第一章 前言1
3、.1 课题的背景及课题的意义火灾每年要夺走成千上万人的生命和健康,造成数以亿计的经济损失。据统计,全世界每年的活在经济损失可达整个社会生产总值的0.2%,我国的火灾次数和损失虽比发达国家要少,但损失也相当严重。统计表明,我国火灾每年直接经济损失:50年代平均为0.5 亿元;60年代平均为1.5亿元;70年代为2.5 亿元;80年代为3.2亿元;进入90年代,火灾的损失更为严重,前5年平均每年已达8.2亿元。根据国外的统计,火灾间接损失是直接损失的3倍左右,由此可见火灾造成的损失是非常惊人的。 随着我国迅速发展,消防水系统的安全、可靠、稳定运行越来越重要,对消防水系统的自动调节控制水平也越来越高
4、。原来的手动控制和简单的电气连锁等控制方式,由于自动化程度较低,可靠性较差,已不能安全、可靠运行。随着可编程PLC自动控制器和变频器调节原理的广泛应用,建议消防水系统采用可编程PLC自动控制器和变频器来调节控制的恒定供水压力,有效的保证火情发生时的及时供水,而且可以自动来回切换,确保供水系统的安全使用,实现无人值班避免由于人为因素而造成的失误。1.2 消防在国内外的历史及发展状况1.2.1消防在国外的历史及发展据资料记载,世界上的古老城镇,一直是由了望员站在了望塔上观察火焰,发现火灾,用报警声人们报警,并通知人们或消防队灭火,此种报替方式一直沿用了很久。19世纪中叶,西方国家的工程师率先将近代
5、机械和电气技术应用于火灾预防与扑救。发明了早期的自动喷水灭火装置和火灾自动报誉装置。1847年,牙科医生Channing和缅因大学教授Farmer开发研制了第一台用于城镇火灾报警的火灾报苦发射装置。1852年安装在波士顿,从此,城镇火灾报苦向前大大迈进了一步。最早的探测技术当推1890年英国人研制的感温探测器。20世纪初,随着化学和化工技术的发展,开始了泡沫灭火剂的研制;同时,建筑结构及材料的防火技术也逐渐成为一个重要的研究领域。本世纪中期以来,消防技术也取得了很大的进步;物理学、燃烧学、流体力学和计算机技术等学科的进展,为开展火灾形成机理和成灾规律的研究提供了条件。本世纪50年代,美国哈佛大
6、学的艾蒙斯(H.W.Enunons)教授提出了火灾模化的理论,为火灾科学的建立奠定了基础。1984年,英国爱丁堡大学庄斯戴尔(D.Drysdale )出版了专著火灾动力学,第一次对火灾科学的理论体系进行了系统的阐述。这便是现代高层消防报警系统的前身。本世纪50年代至70年代,感烟火灾探测器出现,灵敏度比感温探测器大大提高,随着现代科技的发展,人们把电子技术应用到防火系统。发明了早期的火灾报警系统。二十世纪八十年代初,推出了新一代全新火灾报警控制系统。该系统智能集中于控制器部分,探测器输出模拟信号,由控制器对这些信号进行处理,判断是否发生火灾。它不仅解决了由于探测零点漂移而引起的非真实可靠探测的
7、问题和探测器检查问题,而且提高了系统的抗千扰性,增加了可靠性。1.2.2 消防在我国的发展我国的消防技术的研究起步于1956年,从1980年开始了消防报警系统设备的研究,经过近二十年的发展,国内的火灾报鳌系统也经历了从多线制到总线制的发展过程。由于我国消防报警设备起步较晚,技术一直落后于国外,因资金缺乏,国内生产消防报警设备的工厂、公司缺乏先进的火焰燃烧实验室,使得对火灾从初期阴燃到明火燃烧的数学模型及不同物质燃烧的状态、机理研究甚少,从而只能走引进一国产化一仿制一自行开发的道路,故在进入九十年代后各厂家纷纷以引进技术或合资等形式来提高自己的竞争能力1。第二章 探测器的原理及结构探测器是系统的
8、“感觉器官”,它的作用是监视环境中有没有火灾的发生。一旦有了火情,就将火灾的特征物理量,如温度、烟雾、气体和辐射光强等转换成电信号,并立即动作,向火灾报带控制器发送报替信号。对于易燃易爆场合,火灾探测器主要探测其周围空间的气体浓度,在浓度达到爆炸下限以前报警。在个别场合下,探测器也可探测压力和声波。下面按探测器的不同分类方法分别介绍其原理和结构。探测器的分类比较复杂。实用的分类方法有结构造型分类法、探测火灾参数分类法和使用环境分类法等2。2.1 结构造型分类方法按探测器的结构造型分类,可以分成线型和点型两大类。(1) 线型探测器:这是一种响应某一连续线路周围的火灾参数的火灾探测器,其连续线路可
9、以是“硬”的,也可以是“软”的。如空气管线型差温火灾探测器,是由一条细长的铜管或不锈钢管构成“硬”的连续线路。又如红外光束线型感烟火灾探测器,是由发射器和接受器二者中间的红外光束构成“软”的连续线路。(2) 点型探测器:这是一种响应某一点周围的火灾参数的火灾探测器。大多数火灾探测器属于点型火灾探测器。2.2 探测参数分类法根据探测器探测参数的不同,可以划分为感温、感烟、感光、气体和复合式等几大类。2.2.1 感温探测器的构造及工作原理感温探测器:这是一种响应异常温度、温升速率和温差的火灾探测器。又可分为定温火灾探测器一温度达到或超过预定值时响应的火灾探侧器;其结构如图2.1所示: 图2.1 定
10、温感温探测器结构图 图2.2 定温感温探测器的工作原理图定温探测器的工作原理如图2.2所示:它是由黄铜和殷铜之类膨胀系数不同的两种金属片结合成双金属小片B的传感器。由此图可知,通常接点a和b离开,一旦发生火灾,则双金属片弯曲,于是a和b两点接触,从而使指示灯发亮或电铃发声。 差温探测器一升温速率超过预定值时响应的感温火灾探测器;其结构如图2.3所示:图2.3 差温感温探测器结构图图 2.4 差温感温探测器工作原理图差温探侧器的工作原理如图2.4所示:它是一种利用空气膨胀的差动式传感器。这种传感器由气室A、薄金属片形成的曲线图形板D、汇漏孔L和电接点a、b构成。从右图可知,当有火灾时,由于波纹板
11、膨胀,接点a和b接合,故火灾指示灯发亮和铃响。差定温探测器一兼有差温、定温两种功能的感温探测器。感温探测器,由于采用不同的敏感元件,如热敏电阻、热电偶、双金属片、易熔金属、膜盒和半导体等,又可派生出各种感温探测器。 2.2.2 感烟探测器的构造及工作原理感烟探测器:这是一种响应燃烧或热解产生的固体或液体微粒的探测器。由于它能探测物质燃烧初期所产生的气溶胶或烟雾粒子浓度,因此,有的国家称感烟火灾探测器为“早期发现”探测器。气溶胶或烟雾粒子可以改变光强,减小电离室的离子电流以及改变空气电容器的解电常数半导体的某些性质。由此,感烟火灾探测器又可分为离子型、光电型、电容式和半导体型等几种。其中光电感烟
12、火灾探测器,按其动作原理的不同,还可以分为减光型(应用烟雾粒子对光路遮挡原理)和散光型(应用烟雾粒子对光散射原理)两种。若按工作特性又可分为非累积型和累积型。非累积型传感器只要达到规定的烟浓度既工作,而累积型传感器只在规定浓度持续20-30s后才工作。在能放射较弱射线的电离箱中,放射性同位素产生离子电流,当烟雾进入传感器时,烟雾被射线吸收,从而使电流减弱。这种结构的传感器不受温度和压力变化的影响。来自发光二极管的光,经过聚光透镜聚焦在受光器上。正常情况下,光不聚焦在受光器上,但烟雾粒子进入传感器后,由于光散射把光聚在受光器上,从而发出信号。应注意,这种传感器的结构必须做到仅让烟雾进入传感器内部
13、,不能让昆虫等别的物质进去。2.2.3 其他探测器的构造及工作原理(1) 感光探测器:感光火灾探测器又称为火焰探测器。这是一种响应火焰辐射出的红外、紫外、可见光的火灾探测器,主要有红外火焰型和紫外火馅型两种。(2) 气体探测器:这是一种响应燃烧或热解产生的气体的火灾探测器。在易燃易爆场合中主要探测气体(粉尘)的浓度,一般调整在爆炸下限浓度的1/5-1/6时动作报告。用作气体火灾探测器探测气体(粉尘)浓度的传感元件主要有铂丝、铂钯(黑白元件)和金属氧化物半导体(如金属氧化物、钙钛晶体和尖晶石)等几种。(3) 复合式探测器:这是一种响应两种以上火灾参数的火灾探测器。主要有感温感烟火灾探测器、感光感
14、烟火灾探测器、感光感温火灾探测器等。(4) 其他探测器:有探测泄漏电流大小的漏电流感应型火灾探测器;有探侧静电电位高低的静电感应型火灾探测器;还有在一些特殊场合使用的,要求探测极其灵敏、动作极为迅速,以至要求探测爆炸声产生的某些参数的变化(如压力的变化)信号,来抑制消灭爆炸事故发生的微差压型火灾探测器;以及利用超声原理探测火灾的超声波火灾探测器等等。2.3使用环境分类法(1) 陆用型:一般用于内陆、无腐蚀性气体的环境,其使用温度范围为-10+15,相对温度在85%以下。在现有产品中,凡没有注明使用环境型式的都为陆用型。(2) 船用型:船用型火灾探测器主要用于舰船上,也可用于其他高温、高湿的场所
15、,其特点是耐高温、高湿,在50以上的高温和90100%的高湿的环境中,可以长期正常工作。(3) 耐寒型:这种火灾探测器特点是耐低温。它能在一40以下的高寒环境中长期正常工作。它适用于北方无采暖的仓库和冬季平均温底低于-10的地区。(4) 耐酸型:该火灾探测器不受酸性气体的腐蚀,适用于空间经常停滞有较重含酸性气体的工厂区。(5) 耐碱型:该火灾探测器不受碱性气体的腐蚀,适用于空间经常停滞有较重碱性气体的场合。(6) 防爆型:该火灾探测器适用于易燃易爆的场合。其结构符合国家防爆有关规定。第三章 控制原理介绍可编程序控制器是以微处理器为基础,综合了计算机技术、自动控制技术和通信技术发展起来的一种通用
16、的工业自动控制装置。它具有体积小、功能强、灵活通用与维护方便等一系列的优点。特别是它的高可靠性和较强的适应恶劣环境的能力,受到用户的青睐。因而在冶金、化工、交通、电力等领域获得了广泛的应用,成为了现代工业控制的三大支柱之一。3.1 可编程控制器的发展历史在可编程序控制器问世以前,工业控制领域中是继电器控制占主导地位。这种由继电器构成的控制系统有着明显的缺点:体积大、耗电多、可靠性差、寿命短、运行速度不高,尤其是对生产工艺多变的系统适应性更差,如果生产任务和工艺发生变化,就必须重新设计,并改变硬件结构,造成了时间和资会的严重浪费。1968年,在底特律的美国通用汽车公司(GM公司)为了在每次汽车改
17、型或改变工艺流程时能不改动原有继电器柜内的接线以便降低生产成本,缩短新产品的开发周期,提出了研制新型逻辑顺序控制装置,并提出了该装置的研制指标要求,即十项招标技术指标。其主要内容如下;(1) 在使用者的工厂里,能以最短中断服务时间,迅速方便地对其控制的硬件和设备进行编程及重新进行程序的设计。(2) 所有系统单元必须能在工厂内无特殊支持的设备、硬件及环境条件下运行。(3) 系统的维修必须简单易行。在系统中应设计有状态指示器及插入式模块,以便在最短的停车时间内使维修和故障诊断变得简单易行。(4) 装置的体积应小于原有继电器控制柜的体积,它的能耗也应较少。(5) 必须能与中央数据收集处理系统进行通信
18、,以便监视系统的运行状态和运行情况。(6) 输入开关量可以是已有的标准控制系统的按钮和限位开关的交流15V电压信号。(7) 输出的驱动信号必须能驱动以交流运行的电动机起动器和电磁阀线圈,每个输出量将设计为可开停和连续操纵具有115V、2A以下容量的电磁阀等负载设备。(8) 具有灵活的扩展能力。在扩展时,必须能以系统最小的变动及最短的更换和停机时间,使原有装置从系统的最小配置扩展到系统的最大配置。(9) 在购买和安装费用上,应有与原有继电辑控制系统的竞争力,即有高的性能价格比。(10) 用户存储器容量至少在4KB以上。(根据当时的汽车装配过程的要求提出) 从上述十项指标可以看出,它实际上就是当今
19、可编程序控制器的最基本的功能。将它们归纳一下,其核心为四点:(1) 用计算机代替继电器控制盘。(2) 用程序代替硬件接线。(3) 输入输出电平可与外部装置直接连接。(4) 结构易于扩展。美国的数字设备公司(DEC)CP标,并在1969年研制出了第一台可编程序控制器(PDP14) 。其后,美国的MODICON公司也推出了084控制器,1971年,日本推出了DSC8控制器,1973年西欧各国的各种可编程序控制器也研制成功我国在1974年开始研制可编程序控制器。3.2 PLC的定义由于PLC在不断发展,因此,对它下一个确切的定义是困难的。在二十世纪七十年代PLC问世后,由美国电气制造商协会(Nati
20、onal Electric Manufacturer AssociationNEMA)对PLC下过如下的定义:PLC是一种数字式的电子装置。它使用可编程序的存储器来存储指令,实现逻辑运算、顺序运算、计数计时和算术运算等功能,用来对各种机械或生产过程进行控制。1982年,国际电工委员会(International Electrical CommitteeIEC)颁布了PLC标准草案,1985年提交了第2版,1987年的第3版对PLC作了如下的定义:PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术
21、运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应按照易于与工业控制系统形成一个整体、易于扩展其功能的原则而设计。上述的定义表明,PLC是一种能直接应用于工业环境的数字电子装置,它有与其他顺序控制装置不同的特点。3.2.1 PLC的特点及结构PLC能如此迅速发展的原因是由于它具有通用计算机所不及的一些下列特点:(1) 可靠性。对可以维修的产品,可靠性包括产品的有效性和可维修性PLC的可靠性高,表现在下列几方面:与继电器逻辑控制系统比较,PLC可靠性提高的主要原因:PLC不需要大量的活动部件和电子元器件,它的接线也大大减少。与此同时,
22、系统的维修简单、维修时间缩短,因此可靠性得到提高。PLC采用了一系列可靠性设计的方法进行设计,例如冗余设计、掉电保护、故障渗断和信息保护及恢复等,使可靠性得到提高。PLC有较强的易操作性,它具有编程简单、操作方便、维修容易等特点,因此对操作和维修人员的技能要求降低,容易学习和掌握,不容易发生操作的失误,可靠性高。 (2) 易操作性PLC的易操作性表现在下列三个方面:操作方便。对PLC的操作包括程序输入的操作和程序更改的操作。大多数PLC采用编程器进行程序输入和更改的操作。编程器至少提供了输入信息的显示,对大中型的PLC,编程器采用CRT屏幕显示,因此,程序的输入直接可以显示。编程方便。PLC有
23、多种程序设计语言可供使用。对电气技术人员来说,梯形图由于与电气原理图较为接近,容易掌握和理解。所以有利于程序的编写和学习。采用布尔助记符编程语言时,由于符号是功能的简单缩写,十分有利于编程人员的编程。维修方便。PLC所具有的自诊断功能对维修人员维修技能的要求降低了。当系统发生故障时,通过硬件和软件的自诊断,维修人员可根据有关故障信号灯的提示和故障代码的显示,或通过编程器和CRT屏幕的显示,很快地找到故障所在的部位,为迅速排除故障和修复节省了时间。 (3) 灵活性PLC的灵活性表现在下列三方面:编程的灵活性。PLC采用的编程语占有梯形图、布尔助记符、功能表图、功能模块图和语句描述编程语言,只要掌
24、握其中一种语言就可以进行编程。编程方法的多样性使编程方便,应用面拓展。由于采用软连接的方法,在生产工艺流程更改或者生产设备更换时,可以不必改变PLC的硬设备,通过程序的编制与更改就能适应生产的需要。这种编程的灵活性是继电器顺序控制系统所不能比拟的。正是由于编程的柔性特点,使PLC能大量地替代继电器顺序控制系统,成为当今工业控制领域的重要控制设备。扩展的灵活性。PLC的扩展灵活性是它的一个重要的特点。它可根据应用的规模不断扩展,即可进行容量的扩展,功能的扩展,应用和控制范围的扩展。它不仅可以通过增加输入输出单元来增加点数,通过扩展单元来扩大容量和功能,也可以通过多台PLC的通信来扩大容量和功能,
25、甚至可通过与集散控制系统(DCS)或其他上位机的通信来扩展它的功能,并与外部设备进行数据的交换等。这种扩展的灵活性大大地方便了用户。操作的灵活性。操作的灵活性是指设计的工作量大大减少,编程的工作量和安装施工的工作量大大减少,操作十分灵活方便,监视和控制变得容易。在继电器顺序控制系统中所需的一些操作可以简化,不同的生产过程可采用相同的控制台或控制屏等。PLC的基本结构如下:PLC的型号、规格繁多。它主要由中央处理单元CPU、存储器、输入、输出等部分组成10。(1)中央处理单元CPUCPU是PLC的核心,其主要作用是:接收从编程器输入的用户程序,并存入程序存储器中;用扫描方式采集现场输入状态和数据
26、,并存入相应的数据寄存器;执行用户程序,从程序存储器中逐条取出用户程序,经过解释程序解释后逐条执行,完成程序规定的逻辑和算术运算,产生相应的控制信号去控制输出电路,实现程序规定的各种操作;通过故障自诊断程序,诊断PLC的各种运行错误。因此,CPU的性能对PLC的整机性能有着决定性的影响。(2) 存储器PLC的存储器用来存放程序和数据。程序分系统程序和用户程序。系统程序存储器该存储器存放系统程序(系统软件)。系统程序是PLC研制者所编的程序,它是决定性能的关键。系统程序包括监控程序、解释程序、故障自诊断程序、标准子程序库及其他各种管理程序等。系统程序由制造厂家提供,一般都固化在ROM或EPROM
27、中,用户不能直接存取。系统程序用来管理、协调PLC各部分的工作,翻译、解释用户程序,进行故障诊断等。用户程序存储器该存储器存放用户程序(应用软件)。用户程序是用户为解决实际问题并根据PIC的指令系统而编制的程序,它通过编程器输入,经CPU存放入用户存储器。为便于程序的调试、修改、扩充、完善,该存储器使用RAM。变量(数据)存储器变量存储器存放PLC的内部逻辑变量,如内部继电器、FO寄存器、定时器/计数器中逻辑变脸的现行值等,这些现行值在CPU进行逻辑运算时需随时读出、更新有关内容,所以,变量存储器也采用RAM。现今用户程序存储器和变量存储器常采用低功耗的CMOSRAM及锂电池供电的掉电保持技术
28、,以提高运行可靠性。通常PLC产品资料中所指的内存储器容量,是指用户程序存储器而言,且以字(6位/字)为单位来表示存储器的容量。(3) 输入输出接口(简称I/O)输入输出接口是CPU与工业现场装置之问的连接部分,是PLC的重要组成部分。输入接口输入接口的功能是采集现场各种开关接点的状态信号,并将其转换成标准的逻辑电平,送给CPU处理一般的输入信号多为开关量信号,各种开关量输入接口的基本结构大同小异,常有直流和交流开关量输入接口电路两种。交流开关量输入接口电路与直流开关量输入接口电路的主要区别是,前者要由现场提供交流电流,输入的交流信号经整流后得到直流,再去驱动光电耦合器。在机械设备中,除开关量
29、外,还常遇到一些模拟量如温度、压力、位移和速度等。对这些模拟量进行采集时,必须经模数转换器(ACD)将模拟量转换成数字量,才能为PLC的CPU所接受。输出接口为适应不同的负载,输出接口有多种方式。常用的有晶体管输出方式、晶闸管输出方式和继电器输出方式。晶体管输出方式用于直流负载;双向晶闸管输出方式用交流负载,继电器输出方式可用于直流负载,也可用于交流负载。一些PLC还具有模拟输出接口,用于需要摸拟信号驱动的负载。(4) 编程器编程器是PLC中一种主要的外部设备,它是开发、维护PLC拧制系统的必备设备。编程器用于用户程序的编制、编辑、调试、检查和监视,还可以通过其键盘去调用与显示PLC的一些内部
30、状念和系统参数。它通过通信端口与CPU联系,完成人机对话连接。编程器上有供编程用的各种功能键和显示灯,以及编程、监控转换丌关。一般的小型PLC主要采用便携式编程器。编程器是专用的,不同型号的PLC都有自己专用的编程器,不能通用。PLC正常工作时,不一定需要编程器。因此,多台同型号的PLC可以只配一个编程器。(5)其他设备PLC的外部设备还有盒式录音机、打印机、EPROM写入器及高分辨率屏幕彩色图形监控设备等。3.2.2 PLC的工作原理与普通微机类似,PLC也是由硬件和软件两大部分组成的。在软件的控制下,PLC才能正常地工作。软件分为系统软件和应用软件两部分。PLC的基本工作如下:(1) 输入
31、现场信息:在系统软件的控制下,顺次扫描各输入点的状态;(2) 执行程序:顺次扫描用户程序中的各条指令,根据输入状念和指令内容进行逻辑运算;(3) 输出控制信号:根据逻辑运算的结果,输出状态寄存器向各输出点并行发出相应的控制信号,实现所要求的逻辑控制功能。上述过程执行完后,又重新开始,反复地执行。每执行一遍所需的时间称为扫描周期。PLC的扫描周期通常为几十毫秒。在实际应用中,大多数机械设备的工作过程可以分为一系列不断重复的顺序操作,PLC的工作方式与此相似。因此,PLC的程序可与机器的动作一一对应,程序编制简单、直观,不容易出错,而且容易修改,从而大大减少了软件的开发费用,缩短了软件的开发周期。
32、为了提高工作的可靠性,及时接收外来的控制命令,PLC在每次扫描期间,除完成上述三步操作外,通常还要进行故障自诊断,完成与编程器等的通信。每次扫描开始,先执行一次自诊断程序,对各输入输出点、存储器和CPU等进行诊断,诊断的方法通常是测试出各部分的当前状态,并与正常的标准状念进行比较,若两者一致,说明各部分工作正常,若不一致则认为有故障。此时,PLC立即启动关机程序,保留现行工作状态,并关断所有输出点,然后停机。诊断结束后,如没发现故障,PLC将继续往下扫描,检查是否有编程器等的通信请求。如果有则进行相应的处理,比如,接受编程器发来的命令,把要显示的状态数据、出错信息送给编程器显示等。处理完通信后
33、,PLC继续往下扫描,输入现场信息,顺序执行用户程序,输出控制信号,完成一个扫描周期。然后又从自诊断开始,进行第二轮扫描。PLC就这样不断反复循环,实现对机器的连续控制,直到接收到停机命令,或因停电、出现故障等才停止工作。3.2.3 PLC消防控制的优点用西门子公司的SIEMENSs7200系列的PLC,此系列的PLC具有结构紧凑、模块化、可扩展性强、指令集丰富等特点。所选用的CPU型号为CPU224可扩展7个模块,最大达94DI/74DO,16AI/16AO(模拟量输入/模拟量输入)并且提供14个数字量输入和10个数字量输出。输入/输出接口电路均采用了光耦合电路,对外界接口具有很强的适应性。
34、由于使用了电动调节阀,所以还扩展了一个EM232模拟量输入模块。该模块具有2路模拟量输出,电流输出量程为,电流全量程分辨率为11位,25时的精度为0.25%,稳定时间为2ms。可满足比较复杂的控制系统的要求。3.3 变频器概述变频器通常包含3个组成部分:整流器(rectifier)和逆变器(Inverter),还有直流部分(DC )。其中,整流器将输入的交流电转换为直流电,逆变器将直流电再转换成所需频率的交流电。除了这2个部分之外,变频器还有可能包含变压器和电池。其中,变压器用来改变电压并可以隔离输入/输出的电路,电池用来补偿变频器内部线路上的能量损失。不同的变频器能够处理的电源功率是不一样的
35、,从几瓦到几兆瓦都有。变频器主要是由主电路、控制电路组成。图3.1变频器组成的电路主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。 它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的平波回路”,以及将直流功率变换为交流功率的“逆变器”。 (1)整流器:最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。(2)中
36、间直流电路:在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。(3)逆变器:同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型PWM逆变器为例示出开关时间和电压波形控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制
37、信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。(1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率(2)电压、电流检测电路:与主回路电位隔离检测电压、电流等。(3)驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。(4)速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。(5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。3.3.
38、1变频器的选型原则变频器选型时要确定以下几点: 1) 采用变频的目的;恒压控制或恒流控制等。 2) 变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。 3) 变频器与负载的匹配问题; I.电压匹配;变频器的额定电压与负载的额定电压相符。 II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。 4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。因此用于
39、高速电机的变频器的选型,其容量要稍大于普通电机的选型。 5) 变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。 6) 对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。3.3.2变频器的节能原理变频器是输出频率可变的交流电力拖动设备。变频器调速的主要工作原理是将供给电机定子的三相交流工频电经大功率整流变成直流,再将直流电用正弦波脉宽调节技术逆变为频率可调、幅度也随之改变的三相交流电,以此为电源再供给电机使用。由水泵的工作原理可知,风机、水泵特性
40、为:Q C H 2 P 3即流量与转速成正比,压力与转速的平方成反比,轴功率与转速的三次方成正比。根据转速公式:n = n1 (1-s)=60f(1-s)/p 式中 f电源频率,在我国工频为50 Hzp极对数s转差率调节电动机电源频率就可调节电动机转速,调节电机转速也就是调节它的负载转速,因此,根据风机、水泵特性可知,调节风机水泵的转速可以达到调节流(风)量的目的,同时,可显著调节轴功率。通过在水泵上加装变频器,可实现自动调节控制,使系统工作平缓稳定,并通过变频节能收回投资。3.3.3变频器在消防恒压供水中的应用 正常工作时,系统自动运行。PLC,变频器,压力传感器组成一个压力闭环控制系统。通
41、过工作站设定水压给定值,变频器运行在压力闭环状态。系统根据设定的水压,自动检测出水口水压,当出水口水压未达到设定值时,PLC控制变频器逐渐升速,直到电机满速,变频器运行在上限速度,当变频器在上限速度运行达到设定时间T1时,仍未达到给定压力值时,PLC自动切掉变频器当前拖动的电机,该电机改由电网直接控制运行,同时PLC控制变频器拖动下一台电机,以此类推,直到检测到的水压与设定的水压一致。变频器P、I调节运行在一个相对稳定的速度,此时供水量与用水量相对平衡,且供水压力为设定的水压。在运行过程中,当系统检测到的水压大于设定的水压时,PLC控制变频器逐渐减速,直到变频器运行在下限速度,当变频器在下限速
42、度运行达到设定时间T2时,压力仍然比设定压力小,则PLC自动切掉一台由接触器直接控制工频运行的电机,为保持水压足够,变频器速度给定为最大,变频器当前拖动的电机迅速升速。以后则根据压力闭环自动调节水压,直到检测到的水压与设定的水压一致,变频器运行在一个相对稳定的速度,此时供水量与用水量相对平衡。 PLC通过两种方式控制变频器,一为PROFIBUS-DP 通讯方式,一为PLC输出直接控制变频器,数字输出作为启停,模拟输出作为速度给定。自动运行时系统自动循环,各泵可先起先停,定期轮换等多种运行形式,以达到各泵均衡使用。第四章 方案设计及控制电路的选择4.1 设计方案 本系统使用两台消防水泵,一台主水
43、泵一台备用水泵一台生活水泵。系统从市政管网引水入400方消防水池,再由生活用水水泵送入楼顶18方消防水箱。平时生活用水从消防水箱中取,生活水泵通过系统保持消防水箱的压力。有火情时,消防水泵启动。网络入下图示。如图所示,消防水箱的作用为无火情时保持消防管网中的水压,当有火情时启动消防水泵,为消防管网中提供足够的水压灭火。4.2 设计要求:4.2.1自动切换及无火灾状态要求1)手/自动转换:本系统设置一个手/自动转换开关。在正常状态下,手/自动转换开关设置为自动方式,当自动控制设备发生故障或者为发现火情也可启动水泵加压。2)消防供水系统在无火情发生的状况:这一状态下,管网内水压的损失是由于逆止阀不
44、严、或管路内渗漏造成的,正常状态下,管路内的水压为1.0Mpa,以保证当消防用水时,消防水管接入管路能迅速出水。为避免供水系统浪费能源,根据具体工况设置管内压力最高点(压力上限)为10公斤,在管内压力达到上限值时,则视没有火情发生,PLC将消防泵停止,而在管道压力为11公斤设计,PLC将稳压泵停止。4.2.2 消防电气控制系统 双电源互投柜 消火栓泵控制柜喷淋泵控制柜 消防稳压泵控制柜1双电源互投柜:根据中国建筑消防设施检验规范要求,消防设备应具有双路电源供电。当主电源故障时,备用电源应自动投入,主电源恢复后应切回到主电源供电;两路电源应当互锁,主回路中将不设漏电保护及热过载继电器保护,面板应具有电源电压指示及双路电源投入/切出指示。主/备电源切换条件:主电源断电时主电源缺相时主电源故障后恢复供电时(备用电源切到主电源) 电气配置:根据负荷大小,机柜可选择高度为2200mm或1800mm标准机柜。负荷特别小时也可选用挂墙式控制箱。电气元件选择德力西、正泰产优质产品。或SIEMNS、ABB等进口名牌产品。2. 消火栓泵
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100