ImageVerifierCode 换一换
格式:PPT , 页数:43 ,大小:438.01KB ,
资源ID:1779530      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1779530.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(医学统计学-判别分析.ppt)为本站上传会员【1587****927】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

医学统计学-判别分析.ppt

1、第十八章第十八章判别分析(discriminantanalysis)目的目的:作出以多个判别指标判别个体分类的:作出以多个判别指标判别个体分类的判别函数或概率公式。判别函数或概率公式。资料资料:个体分两类或多类,判别指标全部为:个体分两类或多类,判别指标全部为数值变量或全部为分类变量。数值变量或全部为分类变量。用途用途:解释和预报(主要用于计量诊断)。:解释和预报(主要用于计量诊断)。分类分类(经典):(经典):Fisher判别和判别和Bayes判别。判别。讲述内容第一节第一节 FisherFisher判别判别第二节第二节 最大似然判别法最大似然判别法第三节第三节 BayesBayes公式判别

2、法公式判别法第四节第四节 BayesBayes判别判别第五节第五节 逐步判别逐步判别第六节第六节 判别分析中应注意的问题判别分析中应注意的问题1.计量资料判别分析。目的是作出以定量指标判别个体属性分类或等级的判别函数。按资料类型分:2.计数资料判别分析。目的是作出以定性或等级指标判别个体属性分类或等级的概率公式概率公式。按方法名分1.Fisher判别2.最大似然判别法3.Bayes公式判别法4.Bayes判别5.逐步判别第一节Fisher判别适用于指标为定量指标的两类判别1.Fisher判别的原理一、两类判别例18-1收集了22例某病患者的三个指标(X1,X2,X3)的资料列于表18-1,其中

3、前期患者(A)类12例,晚期患者(B)类10例。试作判别分析。表表18-1 22例患者三项指标观察结果(例患者三项指标观察结果(Zc=-0.147)表18-2变量的均数及类间均值差(1)计算变量的类均数及类间均值差Dj,计算结果列于表18-2。(2)计算合并协方差矩阵:按公式(18-4),例如:代入公式(18-3)得得到合并协方差阵二、判别效果的评价用误判概率P衡量回顾性误判概率估计往往夸大判别效果。回顾性误判概率估计往往夸大判别效果。第二节最大似然判别法(优度法)适用于指标为定性指标的两类判别或多类判别。资料:个体分两类或多类,判别指标全部为定性或等级 资料。原理:用独立事件的概率乘法定理得

4、到判别对象归属某 类的概率。2.判别规则 3.最大似然判别法的应用例18-2有人试用7个指标对4种类型的阑尾炎作鉴别诊断,收集的5668例完整、确诊的病史资料归纳于表18-3。表表18-3 5668例不同型阑尾炎病例的症状发生频率(例不同型阑尾炎病例的症状发生频率(%)如某病例昨晚开始出现右下腹痛、呕吐等症状,大便正常。经检查,右下腹部压痛,肌性防御(+)、压跳痛(+),体温36.6,白细胞23.7109/L。根据表18-3得第三节第三节 Bayes公式判别法公式判别法适用于指标为定性指标的两类判别或多类判别。资料:资料:个体分两类或多类,判别指标全部为定性个体分两类或多类,判别指标全部为定性

5、 或等级资料。或等级资料。原理:原理:条件概率条件概率+事前概率(各病型或病种的总事前概率(各病型或病种的总 体构成比)体构成比)判别规则:判别规则:举例说明:举例说明:例例18-3注意:第四节第四节 Bayes判别判别适用于指标为定量指标的多类判别(也可用于两类判别)适用于指标为定量指标的多类判别(也可用于两类判别)先验概率确定先验概率确定:1.等概率(有选择性偏倚);等概率(有选择性偏倚);2.频率估计。频率估计。判别规则:归属最大判别规则:归属最大Yg 类类。应用:应用:快速、正确。快速、正确。资料:资料:个体分个体分G类,判别指标定量。类,判别指标定量。原理:原理:Bayes准则。准则

6、。结果:结果:G 个个判别函数判别函数例18-4 欲用4个指标鉴别3类疾病,现收集17例完整、确诊的资料,见表18-4。试建立判别Bayes函数。Bayes判别函数判别函数判别效果评价:误判概率 (回顾性估计,见表18-6)。误判概率的刀切法估计为 。第五节第五节 逐步判别逐步判别目的:目的:选取具有判别效果的指标建立判别函数。选取具有判别效果的指标建立判别函数。应用:应用:只适用于只适用于Bayes判别。判别。原理原理:Wilks统计量统计量 ,F 检验。检验。例18-5利用表18-4的数据作逐步Bayes判别。Bayes判别函数:判别效果评价,误判概率为1/17=5.88%(回顾性估计,见表18-8)。误判概率的刀切法估计17.6%。与例18-4比较,变量筛选后,尽管判别指标由4个减为2个,判别效能却提高了。由此可见,判别指标并不是越多越好。第六节 判别分析中应注意的问题

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服