1、人教版八年级上册压轴题强化数学综合检测试卷含答案1完全平方公式:适当的变形,可以解决很多的数学问题例如:若,求的值解:因为所以所以得根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)若,则 ;若则 ;(3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积2在ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE =BAC,连接CE(1)如图1,当点D在线段BC上,如果BAC=90,则BCE=_度;(2)设,如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;当点在直
2、线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论3如图,在等边中,分别为,边上的点,(1)如图1,若点在边上,求证:;(2)如图2,连若,求证:;(3)如图3,是的中点,点在内,点,分别在,上,若,直接写出的度数(用含有的式子表示)4如图1已知点A,B分别在坐标轴上,点C(3,3),CABA于点A,且BACA,CA,CB分别交坐标轴于D,E(1)填空:点B的坐标是 ;(2)如图2,连接DE,过点C作CHCA于C,交x轴于点H,求证:ADBCDE;(3)如图3,点F(6,0),点P在第一象限,连PF,过P作PMPF交y轴于点M,在PM上截取PNPF,连PO,过P作OPG45交BN于G求
3、证:点G是BN中点5如图,和中,边与边交于点(不与点,重合),点,在异侧,为与的角平分线的交点(1)求证:;(2)设,请用含的式子表示,并求的最大值;(3)当时,的取值范围为,求出,的值6背景角的平分线是常见的几何模型,利用轴对称构造三角形全等可解决有关问题问题在四边形ABDE中,C是BD边的中点(1)如图1,若AC平分BAE,ACE90,则线段AE、AB、DE的长度满足的数量关系为_;(直接写出答案)(2)如图2,AC平分BAE,EC平分AED,若ACE120,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图3,若ACE120,AB4,DE9,BD12,则AE
4、的最大值是_(直接写出答案)7在ABC中,ACB90,过点C作直线lAB,点B与点D关于直线l对称,连接BD交直线于点P,连接CD点E是AC上一动点,点F是CD上一动点,点E从A点出发,以每秒1cm的速度沿AC路径运动,终点为C点F从D点出发,以每秒2cm的速度沿DCBCD路径运动,终点为D点E、F同时开始运动,第一个点到达终点时第二个点也停止运动(1)当ACBC时,试证明A、C、D三点共线;(温馨提示:证明ACD是平角)(2)若AC10cm,BC7cm,设运动时间为t秒,当点F沿DC方向时,求满足CE2CF时t的值;(3)若AC10cm,BC7cm,过点E、F分别作EM、FN垂直直线l于点M
5、、N,求所有使CEMCFN成立的t的值8已知:为的中线,分别以和为一边在的外部作等腰三角形和等腰三角形,且,连接,(1)如图1,若,求的度数(2)如图1,求证:(3)如图2,设交于点,交于点与交于点,若点为中点,且,请探究和的数量关系,并直接写出答案(不需要证明)【参考答案】2(1)12;(2)6;17;(3)【分析】(1)根据完全平方公式的变形应用,解决问题;(2)两边平方,再将代入计算;两边平方,再将代入计算;(3)由题意可得:,两边平方从而解析:(1)12;(2)6;17;(3)【分析】(1)根据完全平方公式的变形应用,解决问题;(2)两边平方,再将代入计算;两边平方,再将代入计算;(3
6、)由题意可得:,两边平方从而得到,即可算出结果【详解】解:(1);又;,(2),;又,由,;又,(3)由题意可得,;,;,;图中阴影部分面积为直角三角形面积,【点睛】本题主要考查了完全平方公式的适当变形灵活应用,(1)可直接应用公式变形解决问题(2)小题都需要根据题意得出两个因式和或者差的结果,合并同类项得,是解决本题的关键,再根据完全平方公式变形应用得出答案(3)根据几何图形可知选段,再根据两个正方形面积和为18,利用完全平方公式变形应用得到,再根据直角三角形面积公式得出答案3(1)90;(2),理由见解析;当点D在射线BC上时,a+=180,当点D在射线BC的反向延长线上时,a=【分析】(
7、1)可以证明BADCAE,得到BACE,证明ACB解析:(1)90;(2),理由见解析;当点D在射线BC上时,a+=180,当点D在射线BC的反向延长线上时,a=【分析】(1)可以证明BADCAE,得到BACE,证明ACB45,即可解决问题;(2)证明BADCAE,得到BACE,BACB,即可解决问题;证明BADCAE,得到ABDACE,借助三角形外角性质即可解决问题【详解】解:(1)AB=AC,BAC=90,ABC=ACB=45,DAE=BAC,BAD=CAE,AB=AC,AD=AE,BADCAE(SAS)ABC=ACE=45,BCE=ACB+ACE=90,故答案为:;(2)理由:,即又,如
8、图:当点D在射线BC上时,+=180,连接CE,BAC=DAE,BAD=CAE,在ABD和ACE中,ABDACE(SAS),ABD=ACE,在ABC中,BAC+B+ACB=180,BAC+ACE+ACB=BAC+BCE=180,即:BCE+BAC=180,+=180,如图:当点D在射线BC的反向延长线上时,=连接BE,BAC=DAE,BAD=CAE,又AB=AC,AD=AE,ABDACE(SAS),ABD=ACE,ABD=ACE=ACB+BCE,ABD+ABC=ACE+ABC=ACB+BCE+ABC=180,BAC=180-ABC-ACB,BAC=BCE=;综上所述:点D在直线BC上移动,+=
9、180或=【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点4(1)见解析(2)见解析(3)【分析】(1)连接DF,根据“有一个角是60的等腰三角形是等边三角形”可判断DEF是等边三角形,则DF=EF,又ABC是等边三角形,根据三角形内角和可解析:(1)见解析(2)见解析(3)【分析】(1)连接DF,根据“有一个角是60的等腰三角形是等边三角形”可判断DEF是等边三角形,则DF=EF,又ABC是等边三角形,根据三角形内角和可得出,AFD=FEC,所以ADFCFE(AAS),则AD=C
10、F;(2)过点F作JKAC交AB于点J,交BC于点K,过点F作PIAB交AC于P,交BC于点I,连接DF,则BJK和CPI是等边三角形,BDEJFDKEF,所以DJ=BE=FK,因为ABPI,FKAC,所以四边形AJFP是平行四边形,则AJ=PF,易得CPI为等边三角形,由FCB=30可得CF平分PCI,则FI=FP,所以FP=AJ,FK=BE=DJ,FI=FK,所以AJ=DJ=BE,即AD=AJ+DJ=2BE;(3)延长MO到点G,使OG=OM,连接NG,BG,NM,作ACQ=ABN,且使CQ=BN,连接MQ,AQ,先得到BOGCOM(SAS),再得到ACQABN(SAS)和BNGCQM(S
11、AS),所以NAM=MAQ=CAM+CAQ=CAM+BAN,所以CAM+BAN=30,则CAM=,所以BAN=30-(1)证明:如图,连接,是等边三角形,是等边三角形,;(2)证明:如图,过点作交于点,交于点,过点作交于,交于点,连接,和是等边三角形,是等边三角形,由(1)中结论可知,四边形是平行四边形,为等边三角形,平分,是等边三角形,即;(3)如图,延长到点,使,连接,作,且使,连接,是等边三角形,又,【点睛】本题属于三角形的综合题,涉及全等三角形的性质与判定,等边三角形的性质与判定,等腰三角形三线合一等知识,类比思想及构造的思想进行分析,仿造(1)中的结论构造出全等三角形是解题关键5(1
12、)(0,6)(2)见解析(3)见解析【分析】(1)作CMx轴于M,求出CM= CN= 2,证明BAOACM,推出AO= CM= 2,OB=AM=4,即可得出答案;(2)在解析:(1)(0,6)(2)见解析(3)见解析【分析】(1)作CMx轴于M,求出CM= CN= 2,证明BAOACM,推出AO= CM= 2,OB=AM=4,即可得出答案;(2)在BD上截取BF= AE,连AF,证BAFCAE,证AFDCED,即可得出答案;(3)作EOOP交PG的延长线于E,连接EB、EN、PB,只要证明四边形ENPB是平行四边形就可以了(1)解:过点C作CGx轴于G,如图所示:C(3,3),CG3,OG3,
13、BOACGA90,ABO+BAOBAO+CAG90,ABOCAG,又ABAC,ABOCAG(AAS),AOCG3,OBAGAO+OG6,点B的坐标是(0,6)(2)证明:如图,过点C作CGx轴于G,CFy轴于F,则CFAO同(1)得:ABOCAG(AAS),AOCG3,CF3,AOCF,CFAODAODCF,AODCFD,AODCFD(ASA),ADCD,CABA,CHCA,BADACH90,又ABOCAG,ABAC,BADACH(ASA),ADCH,ADBAHCCDCH,BACA,ABC是等腰直角三角形,ACB45,HCE90ACB45,DCEHCE45,又CECE,DCEHCE(SAS),
14、CDECHE,ADBCDE(3)证明:过点O作OKOP交PG延长线于K,连接BK、NF,过点P作PLNF于L则OPK是等腰直角三角形,OKPOPK45,OKOP,PNPF,PNF是等腰直角三角形,PFNPNF45,PLNF,FPL45,则OPFOPL+45,GPNOPL45MPO,KOB+BOPFOP+BOP90,KOBFOP,又OBOF6,OKBOPF(SAS),KBPFPN,OKB45+GKBOPFOPL+45,GKBOPLGPN,又KGBPGN,KBGPNG(SAS),BGNG,即点G为BN的中点【点睛】本题是三角形综合题目,考查了全等三角形的判定和性质、坐标与图形性质、等腰直角三角形的
15、判定与性质、平行线的判定与性质、直角三角形的性质等知识,本题综合性强,有一定难度,证明三角形全等是解题的关键,属于中考常考题型6(1)见解析(2),3(3)m105,n150【分析】(1)由条件易证,得,即可得证(2)PDAD-AP6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD解析:(1)见解析(2),3(3)m105,n150【分析】(1)由条件易证,得,即可得证(2)PDAD-AP6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即ADBC时AP的长度,此时PD可得最大值(3)为与的角平分线的交点,应用“三角形内角和等于180”及角平分线定义,即可表示出,从而
16、得到m,n的值(1)解:在和中,如图1即(2)解:当ADBC时,APAB3最小,即PD633为PD的最大值(3)解:如图2,设则 为与的角平分线的交点即【点睛】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30的角所对的直角边等于斜边的一半,全等三角形的判定和性质,角平分线定义等,解题关键是将PD最大值转化为PA的最小值7(1)AE=AB+DE(2)AE=AB+DE+BD(3)【分析】(1)在AE上取一点F,使AF=AB,及可以得出ACBACF,就可以得出BC=FC,ACB=ACF,就可以得出解析:(1)AE=AB+DE(2)AE=AB+DE+BD(3)【分析】(1)在AE上取一点F,
17、使AF=AB,及可以得出ACBACF,就可以得出BC=FC,ACB=ACF,就可以得出CEFCED就可以得出结论;(3)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG可以求得CF=CG,CFG是等边三角形,就有FG=CG=BD,进而得出结论;(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG根据两点之间线段最短解决问题即可(1)AE=AB+DE;理由:在AE上取一点F,使AF=AB,AC平分BAE,BAC=FAC在ACB和ACF中,ACBACF(SAS),BC=FC,ACB=ACFC是BD边的中点BC=CD,CF=CDACE=9
18、0,ACB+DCE=90,ACF+ECF=90ECF=ECD在CEF和CED中,CEFCED(SAS),EF=EDAE=AF+EF,AE=AB+DE,故答案为:AE=AB+DE;(2)猜想:AE=AB+DE+BD证明:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CGC是BD边的中点,CB=CD=BDAC平分BAE,BAC=FAC在ACB和ACF中, ACBACF(SAS),CF=CB,BCA=FCA同理可证:CD=CG,DCE=GCECB=CD,CG=CFACE=120,BCA+DCE=180-120=60FCA+GCE=60FCG=60FGC是等边三角形FG=F
19、C=BDAE=AF+EG+FGAE=AB+DE+BD(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG,如图所示:C是BD边的中点,CB=CD=BD=,ACBACF(SAS),CF=CB=,BCA=FCA,同理可证:CD=CG=,DCE=GCE,CB=CD,CG=CF,ACE=120,BCA+DCE=180-120=60,FCA+GCE=60,FCG=60,FGC是等边三角形,FC=CG=FG=,AEAF+FG+EG,当A、F、G、E共线时AE的值最大,最大值为故答案为:【点睛】本题考查了四边形的综合题,角平分线的性质的运用,全等三角形的判定及性质的运用,等边
20、三角形的性质的运用,勾股定理的运用,解答时证明三角形全等是关键8(1)见解析(2)(3)【分析】(1)先由AC=BC、ACB=90得到ABC=45,进而得到CBD=CDB=45,然后得到BCD=90,最后得到ACB+BCD=18解析:(1)见解析(2)(3)【分析】(1)先由AC=BC、ACB=90得到ABC=45,进而得到CBD=CDB=45,然后得到BCD=90,最后得到ACB+BCD=180,即A、C、D三点共线;(2)先用含有t的式子表示CE和CF的长,然后根据CE=2CF列出方程求得t的值;(3)先由BCP=FCN、BCP+ECM=90,ECM+MEC=90得到MEC=FCN,然后结
21、合全等三角形的性质列出方程求得t的值(1)证明:AC=BC,ACB=90,ABC=45,点B与点D关于直线l对称,BD直线l,BC=CD,直线lAB,BDAB,ABD=90,CBD=CDB=45,BCD=90,ACB+BCD=180,A、C、D三点共线;(2)解:AC=10cm,BC=7cm,当点F沿DC方向时,0t3.5,CE=10-t,CF=7-2t,CE=2CF,10-t=2(7-2t),解得:t=(3)解:BCP=FCN,BCP+ECM=90,ECM+MEC=90,MEC=FCN,CEMCFN,当CE=CF时,CEMCFN,当点F沿DC路径运动时,10-t=7-2t,解得,t=-3,不
22、合题意,当点F沿CB路径运动时,10-t=2t-7,解得,t=,当点F沿BC路径运动时,10-t=7-(2t-72),解得,t=11,第一个点到达终点时第二个点也停止运动点E从A点出发,以每秒1cm的速度沿AC路径运动,终点为CAC=10,0t10,t=11时,已停止运动综上所述,当t=秒时,CEMCFN【点睛】本题是三角形综合题目,考查的是全等三角形的判定和性质、等腰三角形的性质、等腰直角三角形的性质等知识,掌握全等三角形的判定定理和性质定理,灵活运用分类讨论思想是解题的关键9(1)BAC=50;(2)见解析;(3)【分析】(1)利用三角形内角和定理求出EAB和CAF,再根据构建方程即可解决
23、问题;(2)延长AD至H,使DH=AD,连接BH,想办法证解析:(1)BAC=50;(2)见解析;(3)【分析】(1)利用三角形内角和定理求出EAB和CAF,再根据构建方程即可解决问题;(2)延长AD至H,使DH=AD,连接BH,想办法证明ABHEAF即可解决问题;(3)先证明ACDFAG,推出ACD=FAG,再证明BCF=150即可(1)AE=AB,AEB=ABE=65,EAB=50,AC=AF,ACF=AFC=75,CAF=30,EAF+BAC=180,EAB+2ABC+FAC=180,50+2BAC+30=180,BAC=50(2)证明:延长AD至H,使DH=AD,连接BH,EF=2AD
24、,AH=EF,在BDH和CDA中,BDHCDA,HB=AC=AF,BHD=CAD,ACBH,ABH+BAC=180,EAF+BAC=180,EAF=ABH,在ABH和EAF中,ABHEAF,AEF=ABH,EF=AH=2AD,(3)结论:GAF-CAF=60由(1)得,AD=EF,又点G为EF中点,EG=AD,在EAG和ABD中,EAGABD,EAG=ABC=60,AEB是等边三角形,ABE=60,CBM=60,在ACD和FAG中,ACDFAG,ACD=FAG,AC=AF,ACF=AFC,在四边形ABCF中,ABC+BCF+CFA+BAF=360,60+2BCF=360,BCF=150,BCA+ACF=150,GAF+(180-CAF)=150,GAF-CAF=60.【点睛】本题考查三角形综合题,涉及全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100