1、2024年人教版七7年级下册数学期末测试题(附答案)一、选择题1如图,与是同旁内角,它们是由( )A直线,被直线所截形成的B直线,被直线所截形成的C直线,被直线所截形成的D直线,被直线所截形成的2下列四幅名车标志设计中能用平移得到的是( )A奥迪B本田C奔驰D铃木3平面直角坐标系中,点在( )Ax轴的正半轴Bx轴的负半轴Cy轴的正半轴Dy轴的负半轴4下列命题中是假命题的是()A对顶角相等B在同一平面内,垂直于同一条直线的两条直线平行C同旁内角互补D平行于同一条直线的两条直线平行5如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b中的直线b上,已知,则的度数为 ABCD6下列说法错
2、误的是()A3的平方根是B1的立方根是1C0.1是0.01的一个平方根D算术平方根是本身的数只有0和17如图,将一张长方形纸片折叠,若,则的度数是( )A80B70C60D508已知点,点,点,是线段的中点,则,在平面直角坐标系中有三个点A(1,),B(,),C(0,1),点P(0,2)关于点A的对称点(即,三点共线,且,关于点的对称点,关于点的对称点,按此规律继续以,三点为对称点重复前面的操作依次得到点,则点的坐标是( )A(0,0)B(0,2)C(2,)D(,2)九、填空题9若则 _.十、填空题10平面直角坐标系中,点关于y轴的对称点的坐标为_十一、填空题11已知点A(3a+5,a3)在二
3、、四象限的角平分线上,则a=_十二、填空题12如图,将三角板与直尺贴在一起,使三角板的直角顶点C(=90)在直尺的一边上,若=63,则的度数是_十三、填空题13如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为、,若,且,则_十四、填空题14观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a+b的值为_十五、填空题15已知点M在y轴上,纵坐标为4,点P(6,4),则OMP的面积是_十六、填空题16如图,动点在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点,第次运动到点,第次接着运动到点按这样的运动规律,经过第次运动后动点的坐标是_十七、解答题17计算:(1
4、)|2|+(3)2;(2);(3)十八、解答题18求下列各式中的值:(1);(2)十九、解答题19如图,已知1+AFE=180,A=2,求证:A=C+AFC 证明: 1+AFE=180 CDEF( , )A=2 ( ) ( , ) ABCDEF( , ) A= ,C= ,( , ) AFE =EFC+AFC , = 二十、解答题20如图,在平面直角坐标系中,中任意一点经平移后对应点为,将作同样的平移得到(1)请画出并写出点,的坐标;(2)求的面积;(3)若点在轴上,且的面积是1,请直接写出点的坐标二十一、解答题21请回答下列问题:(1)介于连续的两个整数和之间,且,那么 , ;(2)是的小数部
5、分,是的整数部分,求 , ;(3)求的平方根二十二、解答题22如图,这是由8个同样大小的立方体组成的魔方,体积为64(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长二十三、解答题23综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础已知:AMCN,点B为平面内一点,ABBC于B问题解决:(1)如图1,直接写出A和C之间的数量关系;(2)如图2,过点B作BDAM
6、于点D,求证:ABDC;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分DBC,BE平分ABD,若FCB+NCF180,BFC3DBE,则EBC 二十四、解答题24如图1,D是ABC延长线上的一点,CEAB(1)求证:ACDA+B;(2)如图2,过点A作BC的平行线交CE于点H,CF平分ECD,FA平分HAD,若BAD70,求F的度数(3)如图3,AHBD,G为CD上一点,Q为AC上一点,GR平分QGD交AH于R,QN平分AQG交AH于N,QMGR,猜想MQN与ACB的关系,说明理由二十五、解答题25【问题探究】如图1,DFCE,PCE=,PDF=,猜想DPC
7、与、之间有何数量关系?并说明理由;【问题迁移】如图2,DFCE,点P在三角板AB边上滑动,PCE=,PDF=.(1)当点P在E、F两点之间运动时,如果=30,=40,则DPC= .(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出DPC与、之间的数量关系,并说明理由(图1) (图2)【参考答案】一、选择题1A解析:A【分析】根据两直线被第三条直线所截,根据角位于两直线的中间,截线的同一侧是同旁内角,可得同旁内角【详解】解:与是同旁内角,它们是由直线,被直线所截形成的故选A【点睛】本题考查了同旁内角的含义,熟练掌握含义是解题的关键2A【分析】根据平移的概念:在平面内,
8、把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A、是经过平移得到的,故符合题意;B、不是经过平移得解析:A【分析】根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A、是经过平移得到的,故符合题意;B、不是经过平移得到的,故的符合题意;C、不是经过平移得到的,故不符合题意;D、不是经过平移得到的,故不符合题意;故选A.【点睛】本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念.3B【分析】根据坐标轴上点的坐标特征对点A(-1,0)进行判断【详解】解:
9、点A的纵坐标为0,点A在x轴上,点A的横坐标为-1,点A在x轴负半轴上故选:B【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点4C【分析】利用对顶角相等、平行线的判定与性质进行判断选择即可【详解】解:A、对顶角相等,是真命题,不符合题意;B、在同一平面内,垂直于同一条直线的两条直线平行,是真命题,不符合题意;C、同旁内角互补,是假命题,符合题意;D、平行于同一条直线的两条直线平行,真命题,不符合题意,故选:C【点睛】本题考查判断命题的真假,解答的关键是熟练掌握对顶角相等、平行线的判定与性质等知识,难度不大5B
10、【分析】先根据平行线的性质求出1的同位角,再由两角互余的性质求出2的度数即可;【详解】直线ab,1=55,1=3=55,三角板的直角顶点放在b上,3+2=90,2=90-55=35,故选:B【点睛】本题考查了平行线的性质,即两直线平行,同位角相等以及互余的两角,正确掌握知识点是解题的关键;6A【分析】根据平方根、立方根、算术平方根的概念进行判断即可【详解】解:A、3的平方根是,原说法错误,故此选项符合题意;B、1的立方根是1,原说法正确,故此选项不符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意故选:
11、A【点睛】本题考查了平方根、立方根、算术平方根的概念,掌握平方根、立方根、算术平方根的概念是解题的关键7A【分析】先由折叠的性质得出4=2=50,再根据矩形对边平行可以得出答案【详解】解:如图,由折叠性质知4=2=50,3=180-4-2=80,ABCD,1=3=80,故选:A【点睛】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等的性质和折叠的性质8A【分析】首先利用题目所给公式求出的坐标,然后利用公式求出对称点的坐标,依此类推即可求出的坐标;由的坐标和的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点的坐标【详解】解:设,解析:A【分析】首先利用题目所给公式求出的坐标,
12、然后利用公式求出对称点的坐标,依此类推即可求出的坐标;由的坐标和的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点的坐标【详解】解:设,且是的中点,解得:,同理可得:每6个点一个循环,点的坐标是故选A【点睛】此题考查了平面直角坐标系中坐标规律的探索,读懂题目,利用题目所给公式是解题的关键,利用公式求出几个点的坐标,找到循环规律,利用这个规律即可求出九、填空题9【分析】根据平方与二次根式的非负性即可求解.【详解】依题意得2a+3=0.b-2=0,解得a=-,b=2,=【点睛】此题主要考查实数的性质,解题的关键是熟知实数的性质.解析:【分析】根据平方与二次根式的非负性即可求解.【详解】依题意
13、得2a+3=0.b-2=0,解得a=-,b=2,=【点睛】此题主要考查实数的性质,解题的关键是熟知实数的性质.十、填空题10(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标【详解】解:-3的相反数为3,所求点的横坐标为3,纵坐标为-1,故答案为(3,-1)【点睛】本题考查关于y轴解析:(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标【详解】解:-3的相反数为3,所求点的横坐标为3,纵坐标为-1,故答案为(3,-1)【点睛】本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变十一、填空题11【详解】点A(3a+5,a-3
14、)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,3a+5+a-3=0,a=.故答案是:.解析:【详解】点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,3a+5+a-3=0,a=.故答案是:.十二、填空题1227【分析】根据直尺的两边是平行的,从而可以得到CDEF,然后根据平行线的性质,可以得到2和DCE的关系,再根据ACB=1+DCE,从而可以求得1的度数,本题得以解决【详解】解析:27【分析】根据直尺的两边是平行的,从而可以得到CDEF,然后根据平行线的性质,可以得到2和DCE的关系,再根据ACB=1+
15、DCE,从而可以求得1的度数,本题得以解决【详解】解:CD/EF,2=63,2=DCE=63,DCE+1=ACB=90,1=27,故答案为:27【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质和数形结合的思想解答十三、填空题1368【分析】利用平行线的性质以及翻折不变性即可得到5=DCF=4=3=1=56,进而得出2=68【详解】解:如图,延长BC到点F,纸带对边互相平行,1=56,解析:68【分析】利用平行线的性质以及翻折不变性即可得到5=DCF=4=3=1=56,进而得出2=68【详解】解:如图,延长BC到点F,纸带对边互相平行,1=56,4=3=1=56,由折叠可
16、得,DCF=5,CDBE,DCF=4=56,5=56,2=180-DCF-5=180-56-56=68,故答案为:68【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等十四、填空题14【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n解析:【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连
17、续奇数,所以第n个图形中最上面的小正方形中的数字是2n1,即2n1=11,n=62=21,4=22,8=23,左下角的小正方形中的数字是2n,b=26=64右下角中小正方形中的数字是2n1+2n,a=11+b=11+64=75,a+b=75+64=139故答案为:139【点睛】本题主要考查了数字变化规律,观察出题目正方形的数字的规律是解题的关键.十五、填空题15【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解【详解】解:M在y轴上,纵坐标为4,OM4,P(6,4),SOMPOM|xP|4612解析:【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解【详解】解:
18、M在y轴上,纵坐标为4,OM4,P(6,4),SOMPOM|xP|4612故答案为12【点睛】本题考查了三角形的面积,坐标与图形的性质,根据三角形的面积公式求解是解题的关键十六、填空题16【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可【详解】解:根据动点在平面直角坐标系中按图中箭头所示方向运动解析:【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可【详解】解:根据动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次
19、接着运动到点,第3次接着运动到点,第4次运动到点,第5次接着运动到点,横坐标为运动次数的2倍,经过第2021次运动后,动点的横坐标为4042,纵坐标为2,0,1,0,每4次一轮,经过第2021次运动后,故动点的纵坐标为2,经过第2021次运动后,动点的坐标是故答案为:【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键十七、解答题17(1)9;(2)-;(3)-3.【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式2+929,(2)原式(1+35) ,(3)原式334解析:(1)9;(2)-;(3)-3.【解
20、析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式2+929,(2)原式(1+35) ,(3)原式334+13【点睛】本题考查了实数的运算,熟练掌握相关运算法则是解题关键.十八、解答题18(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可【详解】解:(1),或;(2),【点睛】本题主解析:(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可【详解】解:(1),或;(2),【点睛】本题主要考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解十
21、九、解答题19同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【分析】根据同旁解析:同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【分析】根据同旁内角互补,两直线平行可得 CDEF,根据A=2利用同位角相等,两直线平行,ABCD,根据平行同一直线的两条直线平行可得ABCDEF根据平行线的性质可得A=AFE ,C=EFC,根据角的和可得 AFE =EFC+AFC 即
22、可【详解】证明: 1+AFE=180 CDEF(同旁内角互补,两直线平行),A=2 ,( ABCD ) (同位角相等,两直线平行), ABCDEF(两条直线都与第三条直线平行,则这两直线也互相平行) A= AFE ,C= EFC,(两直线平行,内错角相等) AFE =EFC+AFC , A = C+AFC 故答案为同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键二十、解答题20(1)图见解析,;(2)3
23、.5;(3)点的坐标为或【分析】(1)依据点P(x0,y0)经平移后对应点为P1(x01,y02),可得平移的方向和距离,将ABC作同样的平移即可得到A1B解析:(1)图见解析,;(2)3.5;(3)点的坐标为或【分析】(1)依据点P(x0,y0)经平移后对应点为P1(x01,y02),可得平移的方向和距离,将ABC作同样的平移即可得到A1B1C1;(2)利用割补法进行计算,即可得到A1B1C1的面积;(3)设P(0,y),依据A1B1P的面积是1,即可得到y的值,进而得出点P的坐标【详解】解:(1)如图所示,即为所求;,;(2)的面积为:;(3)设,则,的面积是1,解得,点的坐标为或【点睛】
24、本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形二十一、解答题21(1)4;b(2)4;3(3)8【分析】(1)由161725,可以估计的近似值,然后就可以得出a,b的值;(2)根据(1)的结论即可确定x与y的值;(3)把(2)的结论代入计算即解析:(1)4;b(2)4;3(3)8【分析】(1)由161725,可以估计的近似值,然后就可以得出a,b的值;(2)根据(1)的结论即可确定x与y的值;(3)把(2)的结论代入计算即可【详解】解:(1)161725,45,a4,b5,故答案为:4;5;(
25、2)45,627,由此整数部分为6,小数部分为4,x4,45,314,y3;故答案为:4;3(3)当x4,y3时,64,64的平方根为8【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法二十二、解答题22(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4解析:(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答
26、案【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4(2)因为正方体的棱长为4,所以AB【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键二十三、解答题23(1);(2)见解析;(3)105【分析】(1)通过平行线性质和直角三角形内角关系即可求解(2)过点B作BGDM,根据平行线找角的联系即可求解(3)利用(2)的结论,结合角平分线性质解析:(1);(2)见解析;(3)105【分析】(1)通过平行线性质和直角三角形内角关系即可求解(2)过点B作BGDM,根据平行线找角的联系即可求解(3)利用(2)的结论,结合角平分
27、线性质即可求解【详解】解:(1)如图1,设AM与BC交于点O,AMCN,CAOB,ABBC,ABC90,AAOB90,AC90,故答案为:AC90;(2)证明:如图2,过点B作BGDM,BDAM,DBBG,DBG90,ABDABG90,ABBC,CBGABG90,ABDCBG,AMCN,CCBG,ABDC; (3)如图3,过点B作BGDM,BF平分DBC,BE平分ABD,DBFCBF,DBEABE,由(2)知ABDCBG,ABFGBF,设DBE,ABF,则ABE,ABD2CBG,GBFAFB,BFC3DBE3,AFC3,AFCNCF180,FCBNCF180,FCBAFC3,BCF中,由CBF
28、BFCBCF180得:233180,ABBC,290,15,ABE15,EBCABEABC1590105故答案为:105【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键二十四、解答题24(1)证明见解析;(2)F=55;(3)MQNACB;理由见解析【分析】(1)首先根据平行线的性质得出ACEA,ECDB,然后通过等量代换即可得出答案;(2)首先根据角解析:(1)证明见解析;(2)F=55;(3)MQNACB;理由见解析【分析】(1)首先根据平行线的性质得出ACEA,ECDB,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出FCDECD,HAFHAD,进
29、而得出F(HAD+ECD),然后根据平行线的性质得出HAD+ECD的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出, ,再通过等量代换即可得出MQNACB【详解】解:(1)CEAB,ACEA,ECDB,ACDACE+ECD,ACDA+B;(2)CF平分ECD,FA平分HAD,FCDECD,HAFHAD,FHAD+ECD(HAD+ECD),CHAB,ECDB,AHBC,B+HAB180,BAD70, F(B+HAD)55;(3)MQNACB,理由如下:平分, 平分, , MQNMQGNQG180QGRNQG180(AQG+QGD)180(180CQG+180QGC)(CQG+Q
30、GC)ACB【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键二十五、解答题25DPC=+,理由见解析;(1)70 ;(2) DPC= ,理由见解析.【解析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:DPC=+,理由见解析;(1)70 ;(2) DPC= ,理由见解析.【解析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)化成图形,根据平行线的性质得出=DPE,=CPE,即可得出答案【问题探究】解:DPC=+ 如图,过P作PHDF DFCE,PCE=1=, PDF=2DPC=2+1=+ 【问题迁移】(1)70 (图1) ( 图2) (2) 如图1,DPC= - DFCE,PCE=1=, DPC=1-FDP=1-DPC= - 如图2,DPC= -DFCE,PDF=1= DPC=1-ACE=1-DPC= -
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100