ImageVerifierCode 换一换
格式:PPT , 页数:35 ,大小:721.50KB ,
资源ID:1766046      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1766046.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(插值计算与插值多项式-PPT.ppt)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

插值计算与插值多项式-PPT.ppt

1、插值计算与插值多项式插值问题描述插值问题描述v设已知某个函数关系设已知某个函数关系 在某些离散点上的函数值:在某些离散点上的函数值:vv插值问题插值问题插值问题插值问题:根据这些已知数据来构造函数:根据这些已知数据来构造函数 的一种的一种简单的近似表达式简单的近似表达式,以便于计算点以便于计算点 的函的函数值数值 ,或计算函数的一阶、二阶导数值。,或计算函数的一阶、二阶导数值。2y=f(x)y=p(x)简单的说,插值的目的就是根据给定的数据表,寻简单的说,插值的目的就是根据给定的数据表,寻找一个解析形式找一个解析形式的函数的函数p(x),近似代替,近似代替f(x)3 6.1 插值法的数学描述插

2、值法的数学描述设函数设函数y=f(x)在区间在区间 a,b 上连续上连续,是是 a,b 上上 取取 定定 的的 n+1个个 互互 异异 节节 点点,且且 在在 这这 些些 点点 处处 的的 函函 数数 值值 为为已已知知 ,即即 若若存存在在一一个个f(x)的近似函数的近似函数 ,满足满足则称则称 为为f(x)的一个的一个插值函数插值函数,f(x)为为被插函数被插函数,点点xi为为插值节点插值节点,R(x)=称为称为插值余项插值余项,区间区间 a,b 称为称为插值区间插值区间,插值点在插值区间内的称为插值点在插值区间内的称为内插内插,否则称否则称外插外插 4插值的几何意义56.2 拉格朗日(拉

3、格朗日(Lagrange)插值)插值 为了构造满足插值条件为了构造满足插值条件 (i=0,1,2,n)的便于使用的插值多项式的便于使用的插值多项式P(x),P(x),先考察几种简单情形先考察几种简单情形,然后再推广到一般形式。然后再推广到一般形式。6.2.1 线性插值与抛物插值线性插值与抛物插值(1)线性插值)线性插值线性插值是代数插值的最简单形式。假设给定了函数线性插值是代数插值的最简单形式。假设给定了函数f(x)f(x)在两个互异的点在两个互异的点 ,的值,的值,,现要求用线性函数现要求用线性函数 近似地代替近似地代替f(x)f(x)。选。选择参数择参数a和和b,使使 。称这样的线性函数。

4、称这样的线性函数P(x)P(x)为为f(x)f(x)的线性插值函数的线性插值函数。6线性插值线性插值线性插值多项式线性插值多项式 7由直线两点式可知,通过由直线两点式可知,通过A,B的直线方程为的直线方程为 它也可变形为它也可变形为 显然有:显然有:8大家应该也有点累了,稍作休息大家有疑问的,可以询问和交流大家有疑问的,可以询问和交流大家有疑问的,可以询问和交流大家有疑问的,可以询问和交流9记记可以看出可以看出的线性组合得到,其系数分别为的线性组合得到,其系数分别为 ,称称 为节点为节点 ,的线性插值基函数的线性插值基函数10线性插值基函数线性插值基函数满足下述条件满足下述条件并且他们都是一次

5、函数。并且他们都是一次函数。注意他们的特点对下面的推广很重要注意他们的特点对下面的推广很重要于是线性插值函数可以表示为与基函数的线性组合于是线性插值函数可以表示为与基函数的线性组合 11例例6.1 6.1 已知已知 ,求求解解:这里这里x0=100,y0=10,x1=121,y1=11,利用利用线性插值线性插值 12例例6.2 已知已知y=f(x)的函数表的函数表 求线性插值多项式求线性插值多项式,并计算并计算x=1.5 的值的值X 1 3 y 1 2解解:由线性插值多项式公式得由线性插值多项式公式得13这就是二次插值问题。其几何意义是用经过这就是二次插值问题。其几何意义是用经过3个点个点 的

6、抛物线的抛物线 近似代替曲线近似代替曲线 ,如下图所示。因此也称之为抛物插值。如下图所示。因此也称之为抛物插值。(2)抛物插值 抛物插值又称二次插值,它也是常用的代数插值之一。设已知f(x)在三个互异点x0,x1,x2的函数值y0,y1,y2,要构造次数不超过二次的多项式使满足二次插值条件:使满足二次插值条件:14抛物插值函数抛物插值函数因过三点的二次曲线为抛物线,故称为抛物插值。因过三点的二次曲线为抛物线,故称为抛物插值。15为了与下一节的为了与下一节的Lagrange插值公式比较插值公式比较,仿线性插值仿线性插值,用基函数的方法求解方程组。先考察一个特殊的二次用基函数的方法求解方程组。先考

7、察一个特殊的二次插值问题:插值问题:求二次式求二次式 ,使其满足条件:使其满足条件:这个问题容易求解。由上式的后两个条件知这个问题容易求解。由上式的后两个条件知:是是 的两个零点。于是的两个零点。于是 再由另一条件再由另一条件 确定系数确定系数 从而导出从而导出 16P(x)的参数的参数 直接由插值条件决定,直接由插值条件决定,即即 满足下面的代数方程组:满足下面的代数方程组:该三元一该三元一次方程组次方程组的系数矩阵的系数矩阵 的行列式是范德蒙行列式,当的行列式是范德蒙行列式,当 时,时,方程组的解唯一。方程组的解唯一。17类似地可以构造出满足条件:类似地可以构造出满足条件:的插值多项式的插

8、值多项式 及满足条件:及满足条件:的插值多项式的插值多项式 这样构造出来的这样构造出来的 称为抛物插值的基函数称为抛物插值的基函数 取已知数据取已知数据 作为线性组合系数作为线性组合系数,将基函数将基函数 线性组合可得线性组合可得 容易看出容易看出,P(x),P(x)满足条件满足条件 18例6.3 已知x=1,4,9 的平方根值,用抛物插值公式,求(x0 x1)(x0 x2)(xx1)(xx2)y0+(x1x0)(x1x2)(xx0)(xx2)y1+(x2x0)(x2x1)(xx0)(xx1)y2p2(7)=x0=1,x1=4,x2=9y0=1,y1=2,y2=3(14)(19)(74)(79

9、)*1+(41)(49)(71)(79)*2+(91)(94)(71)(74)*3=2.7p2(x)=19例例6.4 已知函数已知函数y=f(x)在节点上满足在节点上满足 x x0 x1 x2 y y0 y1 y2 求二次多项式求二次多项式 p(x)=a0+a1x+a2x2 使之满足使之满足 p(xi)=yi i=0,1,2解解:用待定系数法用待定系数法,将各节点值依次代入所求多项式将各节点值依次代入所求多项式,得得解上述方程解上述方程,将求出的将求出的a0,a1,a2 代入代入p(x)=a0+a1x+a2x2 即得所求二次多项式即得所求二次多项式 20v我我们们看看到到,两两个个插插值值点点

10、可可求求出出一一次次插插值值多多项项式式p1(x),而而三三个个插插值值点点可可求求出出二二次次插插值值多多项项式式p2(x)。当当插插值值点点增增加加到到n+1个个时时,我我们们可可以以利利用用Lagrange插插值值方方法法写写出出n次次插插值值多多项项式式pn(x),如如下所示:下所示:已知已知n+1个节点处的函数值个节点处的函数值求一个求一个n次插值函数次插值函数满足满足6.2.2 拉格朗日插值多项式拉格朗日插值多项式21构造各个插值节点上的基函数构造各个插值节点上的基函数 满足如下条件满足如下条件22与与推推导导抛抛物物插插值值的的基基函函数数类类似似,先先构构造造一一个个特特殊殊n

11、次次多多项项式式 的插值问题的插值问题,使其在各节点使其在各节点 上满足上满足 即即:由条件由条件 ()()知知,都是都是n n次次 的零点的零点,故可设故可设 23其中其中 为待定常数。由条件为待定常数。由条件 ,可求得可求得 于是于是 代入上式代入上式,得得称称 为关于基点为关于基点 的的n n次插值基函数次插值基函数(i=0,1,(i=0,1,n),n)24以以n+1个个n次基本插值多项式次基本插值多项式为基础为基础,就能直接写出满足插值条件就能直接写出满足插值条件的的n次代数插值多项式。次代数插值多项式。事实上,由于每个插值基函数事实上,由于每个插值基函数都是都是n次值多项式次值多项式

12、,所以他们的线性组合所以他们的线性组合是次数不超过是次数不超过n n次的多项式次的多项式,称形如上式的插值多项称形如上式的插值多项式为式为n次拉格朗日插值多项式。并记为次拉格朗日插值多项式。并记为 25例例6.5 求过点求过点(0,1)、(1,2)、(2,3)的三点插值多项式的三点插值多项式解解:由由Lagrange 插值公式插值公式(给定的三个点在一条直线上)(给定的三个点在一条直线上)26例例6.6 已知已知f(x)的观测数据的观测数据 x 0 1 2 4 f(x)1 9 23 3 构造构造Lagrange插值多项式插值多项式解解 四个点可构造三次四个点可构造三次Lagrange插值多项式

13、插值多项式:基函数为基函数为 27Lagrange插值多项式为插值多项式为 为便于上机计算为便于上机计算,常将拉格朗日插值多项式可改写成常将拉格朗日插值多项式可改写成 28 例例6.7 已知已知f(x)的观测数据的观测数据 x 1 2 3 4f(x)0 -5 -6 3构造插值多项式构造插值多项式 解解:四个点可以构造三次插值多项式四个点可以构造三次插值多项式,将数据将数据 代入插值公式,有代入插值公式,有 这个例子说明这个例子说明p(x)的项数不超过的项数不超过n+1项,但可以项,但可以有缺项。有缺项。29x0 x1 xixi+1 xn-1 xny=f(x)y=p(x)ab在插值区间在插值区间

14、 a,b 上用上用插值多项式插值多项式p(x)近似代替近似代替f(x),除除了在插值节点了在插值节点xi上没有误差外,在其它点上一般是存在误上没有误差外,在其它点上一般是存在误差的。差的。若记若记 R(x)=f(x)-p(x)则则 R(x)就是用就是用 p(x)近似代替近似代替 f(x)时的截断误差时的截断误差,或称或称插值余项我们可根据后面的定理来估计它的大小。插值余项我们可根据后面的定理来估计它的大小。6.2.3 插值多项式的误差插值多项式的误差 30定理定理 设设f(x)在在 a,b 有有n+1阶导数,阶导数,x0,x1,xn 为为 a,b 上上n+1个互异的节点个互异的节点,p(x)为

15、满足为满足 p(xi)=f(xi)(i=1,2,n)的的n 次插值多项次插值多项 式,式,那么对于任何那么对于任何x a,b 有插值余项有插值余项其中其中a b 且依赖于且依赖于x310,使得|x(a,b)由于 (x)一般无法确定,因此式R(x)只能用作余项估计。如果在区间(a,b)上有界,即存在常数 则有余项估计 32对于线性插值,其误差为对于线性插值,其误差为对于抛物插值(二次插值),其误差为对于抛物插值(二次插值),其误差为33例例6.8 已知已知 =100,=121,用线性插值估计用线性插值估计 在在x=115时的截断误差时的截断误差解解:由插值余项公式知由插值余项公式知 因为因为 34例例6.9 已知已知x0=100,x1=121,x2=144,当用抛物插值求当用抛物插值求 在在x=115时的近似值,估计其的截断误差时的近似值,估计其的截断误差 解解=35

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服