ImageVerifierCode 换一换
格式:PPTX , 页数:25 ,大小:565.85KB ,
资源ID:1757736      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1757736.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(双曲线及其标准方程课件(公开课)-PPT.pptx)为本站上传会员【1587****927】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

双曲线及其标准方程课件(公开课)-PPT.pptx

1、双曲线及其标准方程课件(公开课)1、复习、复习和和 等于常数等于常数2a(2a|F1F2|0)的点的轨迹是的点的轨迹是 .平面内与两定点平面内与两定点F1、F2的距离的的距离的2.引入问题:引入问题:差差等于常数等于常数的点的轨迹是什么呢?的点的轨迹是什么呢?平面内与两定点平面内与两定点F1、F2的距离的的距离的动画椭圆平面上动点平面上动点M到两定点距离的差为常数的轨迹是什么到两定点距离的差为常数的轨迹是什么?如图如图(A)(A),|MF|MF1 1|-|MF|MF2 2|=|F|=|F2 2F|=2F|=2a a如图如图(B)(B),|MF|MF2 2|-|MF|MF1 1|=2|=2a a

2、上面上面 两条曲线合起来叫做双曲线两条曲线合起来叫做双曲线由由可得:可得:|MF|MF1 1|-|MF|MF2 2|=2|=2a a (差的绝对值)F 两个定点两个定点F1、F2双曲线的双曲线的焦点焦点;|F1F2|=2c 焦距焦距.(1)差的绝对值等于常数)差的绝对值等于常数;oF2F1M 平面内与两个定点平面内与两个定点F1,F2的距离的差的距离的差等于常数等于常数 的点的轨迹叫做的点的轨迹叫做双曲线双曲线.(2)常数小于)常数小于F1F2动画的绝对值的绝对值(小于(小于F1F2)注意注意定义定义:x xy yo设设P(x,y),双曲线的焦双曲线的焦距为距为2c(c0),F1(-c,0),

3、F2(c,0)常数常数=2aF1F2P即即|(x+c)2+y2-(x-c)2+y2|=2a以以F1,F2所在的直线为所在的直线为X轴,线轴,线段段F1F2的中点为原点建立直角的中点为原点建立直角坐标系坐标系1.建系建系.2.设点设点3.列式列式|PF1-PF2|=2a4.4.化简化简.如何求双曲线的标准方程?大家有疑问的,可以询问和交流大家有疑问的,可以询问和交流可以互相讨论下,但要小声点可以互相讨论下,但要小声点可以互相讨论下,但要小声点可以互相讨论下,但要小声点移项两边平方后整理得:移项两边平方后整理得:两边再平方后整理得:两边再平方后整理得:由双曲线定义知:由双曲线定义知:设设 代入上式

4、整理得:代入上式整理得:即:即:F1F2yxoy2a2-x2b2=1焦点在y轴上的双曲线的标准方程是什么想一想想一想F2F1MxOyOMF2F1xy双曲线的标准方程双曲线的标准方程问题:如何判断双曲线的焦点在哪个轴上?问题:如何判断双曲线的焦点在哪个轴上?问题:如何判断双曲线的焦点在哪个轴上?问题:如何判断双曲线的焦点在哪个轴上?F(c,0)F(0,c)x x2 2与与y y2 2的系数符号,决定焦点所在的坐标轴,当的系数符号,决定焦点所在的坐标轴,当x x2 2,y,y2 2哪个系数为正,焦点就在哪个轴上,双曲线的哪个系数为正,焦点就在哪个轴上,双曲线的焦点所在位置与分母的大小无关。焦点所在

5、位置与分母的大小无关。练习:写出以下双曲线的焦点坐标练习:写出以下双曲线的焦点坐标练习:写出以下双曲线的焦点坐标练习:写出以下双曲线的焦点坐标F(5,0)F(0,5)F(c,0)F(0,c)例例1 已知双曲线的焦点为已知双曲线的焦点为F1(-5,0),F2(5,0),双曲线上,双曲线上一点一点P到到F1、F2的距离的差的绝对值等于的距离的差的绝对值等于6,求双,求双曲线的标准方程曲线的标准方程.2 2a a=6,=6,c=5c=5a a=3,c=5=3,c=5b b2 2=5=52 2-3 32 2=16=16所以所求双曲线的标准方程为:所以所求双曲线的标准方程为:所以所求双曲线的标准方程为:

6、所以所求双曲线的标准方程为:根据双曲线的焦点在根据双曲线的焦点在根据双曲线的焦点在根据双曲线的焦点在 x x 轴上,设它的标准方程为:轴上,设它的标准方程为:轴上,设它的标准方程为:轴上,设它的标准方程为:解解:1.若双曲线 上的点 到点 的距离是15,则点 到点 的距离是(D )A.7 B.23 C.5或25 D.7或23走进高考变式变式 已知两定点已知两定点F1(-5,0),F2(5,0),平面上一动,平面上一动点点P,PF1|PF2|=6,求点,求点P的轨迹方程的轨迹方程.解解:根据双曲线的焦点在根据双曲线的焦点在根据双曲线的焦点在根据双曲线的焦点在 x x 轴上,设它的标准方程为:轴上

7、,设它的标准方程为:轴上,设它的标准方程为:轴上,设它的标准方程为:由题知点由题知点P P的轨迹是双曲线的右支,的轨迹是双曲线的右支,2 2a a=6,=6,c=5c=5a a=3,c=5=3,c=5b b2 2=5=52 2-3 32 2=16=16所以点所以点所以点所以点P P的轨迹方程为:的轨迹方程为:的轨迹方程为:的轨迹方程为:(x0)变式变式2 已知两定点已知两定点F1(-5,0),F2(5,0),平面上一动点,平面上一动点P,满足,满足|PF1|PF2|=10,求点,求点P的轨迹方程的轨迹方程.解解:因为因为|PF1|PF2|=10,|F1F2|=10,|PF1|PF2|=|F1F

8、2|所以点所以点P P的轨迹是分别以的轨迹是分别以F1,F2为端点的为端点的两条射线,两条射线,其轨迹方程是其轨迹方程是:y=0 变式变式3 已知双曲线的焦距为已知双曲线的焦距为10,双曲线上一点,双曲线上一点P到两焦点到两焦点F1、F2的距离的差的绝对值等于的距离的差的绝对值等于6,求双,求双曲线的标准方程曲线的标准方程.解解:2 2a a=6,=6,c=5c=5a a=3,c=5=3,c=5b b2 2=5=52 2-3 32 2=16=16所以所求双曲线的标准方程为:所以所求双曲线的标准方程为:所以所求双曲线的标准方程为:所以所求双曲线的标准方程为:或或课堂练习 1.写出适合下列条件的双

9、曲线的标准方程 1)a=4 ,b=3,焦点在x轴上.2)a=,c=4,焦点在坐标轴上.思考题:如果方程 表示双曲线,求m的取值范围。答:双曲线的标准方程为分析分析:使使A、B两点在两点在x轴上,并轴上,并且点且点O与线段与线段AB的中点重合的中点重合解解:由声速及在由声速及在A A地听到炮弹爆炸声比在地听到炮弹爆炸声比在B B地晚地晚2 2s,可知可知A A地与爆炸点地与爆炸点的距离比的距离比B B地与爆炸点的距离远地与爆炸点的距离远680680m.因为因为|AB|680|AB|680m,所以爆炸点的所以爆炸点的轨迹是以轨迹是以A A、B B为焦点的双曲线在靠近为焦点的双曲线在靠近B B处的一

10、支上处的一支上.例例2 2.已知已知A,BA,B两地相距两地相距800800m,在在A A地听到炮弹爆炸声比在地听到炮弹爆炸声比在B B地地晚晚2 2s,且声速为且声速为340340m/s,求炮弹爆炸点的轨迹方程求炮弹爆炸点的轨迹方程.如图所示,建立直角坐标系如图所示,建立直角坐标系xO Oy,设爆炸点设爆炸点P的坐标为的坐标为(x,y),则则即即 2a=680,a=340 xyoPBA因此炮弹爆炸点的轨迹方程为因此炮弹爆炸点的轨迹方程为 答答:再增设一个观测点再增设一个观测点C,利用,利用B、C(或(或A、C)两)两处测得的爆炸声的时间差,可以求出另一个双曲线的处测得的爆炸声的时间差,可以求

11、出另一个双曲线的方程,解这两个方程组成的方程组,就能确定爆炸点方程,解这两个方程组成的方程组,就能确定爆炸点的准确位置的准确位置.这是双曲线的一个重要应用这是双曲线的一个重要应用.2.若椭圆 和双曲线 有相同的焦点 、点 为椭圆与双曲线的公共点,则 等于()A.B.C.D.六六、走走向向高高考考定义定义图象图象方程方程焦点焦点a.b.c a.b.c 的关的关系系|MF1|-|MF2|=2a(2a0,b0,但a不一定大于b,c2=a2+b2ab0,a2=b2+c2双曲线与椭圆之间的区别与联系:双曲线与椭圆之间的区别与联系:双曲线与椭圆之间的区别与联系:双曲线与椭圆之间的区别与联系:|MF1|MF2|=2a|MF1|+|MF2|=2a x2a2+y2b2=1椭椭 圆圆双曲线双曲线y2x2a2-b2=1F(0,c)F(0,c)课后思考:当 时,表示什么图形?作业作业 :一、一、习题习题 2.2A组组 3、(1)(2)如果我是双曲线,你就是那渐近线如果我是反比例函数,你就是那坐标轴虽然我们有缘,能够生在同一个平面然而我们又无缘,漫漫长路无交点为何看不见,等式成立要条件难到正如书上说的,无限接近不能达到为何看不见,明月也有阴晴圆缺此事古难全,但愿千里共婵娟

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服