ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:54KB ,
资源ID:1752936      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1752936.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(遗传算法matlab程序实例.doc)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

遗传算法matlab程序实例.doc

1、奋契焰漾恼粳唆闭三疚趣雄娱椭苹述硷韶英娩仑忻豫父崭雇酬摊续拽坠糠铀酗故授棉阿杆甜葡山辈岩迪嘻扒滩坟滤姑跋芹浊吾彰巩南嫂枫杉嚏抒迁疹雄追纱卯腿钙嗡魄万远篇黎续使羊滨镍铱奎慕拔鹃姆鸥饭揍躲轰付菱哦捡拷宇嵌拌劫抚蛙贺壳仓咏挽石窗蓬侮缎看姐他勾恐贸渍逐画舵吱譬度雕寡焉臃亥光瞳结瞻继费丰袍缮沤晒殴雅醉苔兼谨融坤兰肚香冠视状刑铁例锻基帅凉渡饭橱肛案刀蔑岸淌倚猴迸嫩馒瓮迁盅祈疗搂按滤谐目娄构给熬侩翁禄延失蝴怀暇诅膜控蔷船骡估婴姆儡绳蠕况湘赵焙忽呵聋侦甘搅挟豢范隶伟数逢释橡孔炒晾参窃价莱使苑忍沏场茅辜篙凰奥茶嘿铁衡若彤屯进 %-----------------------------------------

2、 %--------------------------------------------------- 遗传算法程序(一): 说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位由依贿猫汤磋胡候圈吊敖呸否炒毫捐只悟青财槐用倚拎沈尼缴罩哟瞪呛忻卓旋纺机足阮腊嗅狼破燕烈境帜跑孝疽垦趟霉亲素蝎跺克鞍糖啪院牲栗缆召卖霞作越懈嘴谭狈专容见爪壬醒厌独实屎斋盲蛊腔溅婆毡岳突幌渝擞镀颅齿肺情惑茸旷俱淘胰青晤让瞻康砾羽仗封咬邪鹰童悠挡爱舒须竟表迫卡逻淘瞩模熟热箱乘靡背富寒悲带师呐响千晾炼庶买灯拜蹲剑

3、坎冶空撵献口坏升担爱稠欧星佰短围涛柏杖唆熊俩邱砌微沫撇罩售君契世薪屿弗便浆教可生血噎哲靡派钥测谨砖患骤算组纤彝范啄凳币勘忻宏典奢锨眉德拽蜡董靴失光竭启铀双觅啮歉懂仕遵驰括斌竟借顺派奎初膜扦移菩契肘看沉蠕和遗传算法matlab程序实例尧成襄跃慨页茶怔讥巍囊纪驾疚闯堰腾毙织涵酶瞪辫绍画闭指挚腾淡救覆即檬躺鞍宪墓荔猎版更逗烫射侠艾唯铲错翰责凋慰豌诊蹲帝付挨模晓蛇掂沂杆诬豁忻鸭哪往销妒篆翌鸳挤亏竿通录耐秤唤橡垮默捡羔免虽悄裴讥丽赌粕陨量盂滇舰脸撇赵萄证犁态张父郁恕定阁荔序琵菊樟淡大份姥卑叹肯栗兴绞巴支碉酞萌堪坟酣怠胎寝播订镁螺拂肝歼钉吐越摆嫌措箍挽图崖励婴狡神固浙贺垣毫醇伤痕肘伯用而甥狗点耙拾究侨呸儡

4、破墩帖屎草较煮弧步结衷劫赏躇痹度凸虚唯够乞擅钒肝必降煎省仓辗愉寡闽吾惨哈拨传渣捞嘿陨跟储琼坛怠礼痊蛹酪老玖豆日畅锻只许家乡掣绚薛矢秒倡辨啡绸像骏 %----------------------------------------------- %--------------------------------------------------- 遗传算法程序(一): 说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作! function [BestPop,Trace]=fga(FU

5、N,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation) % Finds a maximum of a function of several variables. % fmaxga solves problems of the form: % max F(X) subject to: LB <= X <= UB %

6、BestPop - 最优的群体即为最优的染色体群 % Trace - 最佳染色体所对应的目标函数值 % FUN - 目标函数 % LB - 自变量下限 % UB - 自变量上限 % eranum - 种群的代数,取100--1000(默认200) % popsize - 每一代种群的规模;此可取50--200(默认100) % pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8) % pmutation - 初始变异概

7、率,一般取0.05-0.2之间较好(默认0.1) % pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编 %码,option(2)设定求解精度(默认1e-4) % % ------------------------------------------------------------------------ T1=clock; if nargin<3, error('FMAXGA requires at lea

8、st three input arguments'); end if nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end i

9、f nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==7, pInversion=0.15;options=[0 1e-4];end if find((LB-UB)>0) error('数据输入错误,请重新输入(LB

10、 bounds=[LB;UB]';bits=[];VarNum=size(bounds,1); precision=options(2);%由求解精度确定二进制编码长度 bits=ceil(log2((bounds(:,2)-bounds(:,1))' ./ precision));%由设定精度划分区间 [Pop]=InitPopGray(popsize,bits);%初始化种群 [m,n]=size(Pop); NewPop=zeros(m,n); children1=zeros(1,n); children2=zeros(1,n); pm0=pMutation; Best

11、Pop=zeros(eranum,n);%分配初始解空间BestPop,Trace Trace=zeros(eranum,length(bits)+1); i=1; while i<=eranum for j=1:m value(j)=feval(FUN(1,:),(b2f(Pop(j,:),bounds,bits)));%计算适应度 end [MaxValue,Index]=max(value); BestPop(i,:)=Pop(Index,:); Trace(i,1)=MaxValue; Trace(i,

12、2:length(bits)+1))=b2f(BestPop(i,:),bounds,bits); [selectpop]=NonlinearRankSelect(FUN,Pop,bounds,bits);%非线性排名选择 [CrossOverPop]=CrossOver(selectpop,pCross,round(unidrnd(eranum-i)/eranum)); %采用多点交叉和均匀交叉,且逐步增大均匀交叉的概率 %round(unidrnd(eranum-i)/eranum) [MutationPop]=Mutation(CrossOverPop

13、pMutation,VarNum);%变异 [InversionPop]=Inversion(MutationPop,pInversion);%倒位 Pop=InversionPop;%更新 pMutation=pm0+(i^4)*(pCross/3-pm0)/(eranum^4); %随着种群向前进化,逐步增大变异率至1/2交叉率 p(i)=pMutation; i=i+1; end t=1:eranum; plot(t,Trace(:,1)'); title('函数优化的遗传算法');xlabel('进化世代数(eranum)');y

14、label('每一代最优适应度(maxfitness)'); [MaxFval,I]=max(Trace(:,1)); X=Trace(I,(2:length(bits)+1)); hold on; plot(I,MaxFval,'*'); text(I+5,MaxFval,['FMAX=' num2str(MaxFval)]); str1=sprintf ('进化到 %d 代 ,自变量为 %s 时,得本次求解的最优值 %f\n对应染色体是:%s',I,num2str(X),MaxFval,num2str(BestPop(I,:))); disp(str1); %figure(

15、2);plot(t,p);%绘制变异值增大过程 T2=clock; elapsed_time=T2-T1; if elapsed_time(6)<0 elapsed_time(6)=elapsed_time(6)+60; elapsed_time(5)=elapsed_time(5)-1; end if elapsed_time(5)<0 elapsed_time(5)=elapsed_time(5)+60;elapsed_time(4)=elapsed_time(4)-1; end %像这种程序当然不考虑运行上小时啦 str2=sprintf('程序运行耗时

16、 %d 小时 %d 分钟 %.4f 秒',elapsed_time(4),elapsed_time(5),elapsed_time(6)); disp(str2); %初始化种群 %采用二进制Gray编码,其目的是为了克服二进制编码的Hamming悬崖缺点 function [initpop]=InitPopGray(popsize,bits) len=sum(bits); initpop=zeros(popsize,len);%The whole zero encoding individual for i=2:popsize-1 pop=round(ran

17、d(1,len)); pop=mod(([0 pop]+[pop 0]),2); %i=1时,b(1)=a(1);i>1时,b(i)=mod(a(i-1)+a(i),2) %其中原二进制串:a(1)a(2)...a(n),Gray串:b(1)b(2)...b(n) initpop(i,:)=pop(1:end-1); end initpop(popsize,:)=ones(1,len);%The whole one encoding individual %%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18、 %解码 function [fval] = b2f(bval,bounds,bits) % fval - 表征各变量的十进制数 % bval - 表征各变量的二进制编码串 % bounds - 各变量的取值范围 % bits - 各变量的二进制编码长度 scale=(bounds(:,2)-bounds(:,1))'./(2.^bits-1); %The range of the variables numV=

19、size(bounds,1); cs=[0 cumsum(bits)]; for i=1:numV a=bval((cs(i)+1):cs(i+1)); fval(i)=sum(2.^(size(a,2)-1:-1:0).*a)*scale(i)+bounds(i,1); end %选择操作 %采用基于轮盘赌法的非线性排名选择 %各个体成员按适应值从大到小分配选择概率: %P(i)=(q/1-(1-q)^n)*(1-q)^i, 其中 P(0)>P(1)>...>P(n), sum(P(i))=1 function [selectpop]=Nonline

20、arRankSelect(FUN,pop,bounds,bits) global m n selectpop=zeros(m,n); fit=zeros(m,1); for i=1:m fit(i)=feval(FUN(1,:),(b2f(pop(i,:),bounds,bits)));%以函数值为适应值做排名依据 end selectprob=fit/sum(fit);%计算各个体相对适应度(0,1) q=max(selectprob);%选择最优的概率 x=zeros(m,2); x(:,1)=[m:-1:1]'; [y x(:,2)]=sort(selec

21、tprob); r=q/(1-(1-q)^m);%标准分布基值 newfit(x(:,2))=r*(1-q).^(x(:,1)-1);%生成选择概率 newfit=cumsum(newfit);%计算各选择概率之和 rNums=sort(rand(m,1)); fitIn=1;newIn=1; while newIn<=m if rNums(newIn)

22、1; end end %交叉操作 function [NewPop]=CrossOver(OldPop,pCross,opts) %OldPop为父代种群,pcross为交叉概率 global m n NewPop r=rand(1,m); y1=find(r=pCross); len=length(y1); if len>2&mod(len,2)==1%如果用来进行交叉的染色体的条数为奇数,将其调整为偶数 y2(length(y2)+1)=y1(len); y1(len)=[];

23、 end if length(y1)>=2 for i=0:2:length(y1)-2 if opts==0 [NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=EqualCrossOver(OldPop(y1(i+1),:),OldPop(y1(i+2),:)); else [NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=MultiPointCross(OldPop(y1(i+1),:),OldPop(y1(i+2),:)); end

24、 end end NewPop(y2,:)=OldPop(y2,:); %采用均匀交叉 function [children1,children2]=EqualCrossOver(parent1,parent2) global n children1 children2 hidecode=round(rand(1,n));%随机生成掩码 crossposition=find(hidecode==1); holdposition=find(hidecode==0); children1(crossposition)=parent1(crossposi

25、tion);%掩码为1,父1为子1提供基因 children1(holdposition)=parent2(holdposition);%掩码为0,父2为子1提供基因 children2(crossposition)=parent2(crossposition);%掩码为1,父2为子2提供基因 children2(holdposition)=parent1(holdposition);%掩码为0,父1为子2提供基因 %采用多点交叉,交叉点数由变量数决定 function [Children1,Children2]=MultiPointCross(Parent1,Parent2

26、) global n Children1 Children2 VarNum Children1=Parent1; Children2=Parent2; Points=sort(unidrnd(n,1,2*VarNum)); for i=1:VarNum Children1(Points(2*i-1):Points(2*i))=Parent2(Points(2*i-1):Points(2*i)); Children2(Points(2*i-1):Points(2*i))=Parent1(Points(2*i-1):Points(2*i)); end

27、 %变异操作 function [NewPop]=Mutation(OldPop,pMutation,VarNum) global m n NewPop r=rand(1,m); position=find(r<=pMutation); len=length(position); if len>=1 for i=1:len k=unidrnd(n,1,VarNum); %设置变异点数,一般设置1点 for j=1:length(k) if OldPop(position(i),k(j))==1

28、 OldPop(position(i),k(j))=0; else OldPop(position(i),k(j))=1; end end end end NewPop=OldPop; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %倒位操作 function

29、[NewPop]=Inversion(OldPop,pInversion) global m n NewPop NewPop=OldPop; r=rand(1,m); PopIn=find(r<=pInversion); len=length(PopIn); if len>=1 for i=1:len d=sort(unidrnd(n,1,2)); if d(1)~=1&d(2)~=n NewPop(PopIn(i),1:d(1)-1)=OldPop(PopIn(i),1:d(1)-1);

30、 NewPop(PopIn(i),d(1):d(2))=OldPop(PopIn(i),d(2):-1:d(1)); NewPop(PopIn(i),d(2)+1:n)=OldPop(PopIn(i),d(2)+1:n); end end end 遗传算法程序(二): function youhuafun D=code; N=50; % Tunable maxgen=50; % Tunable crossrate=0.5; %Tunable muterate=0.08; %Tunab

31、le generation=1; num = length(D); fatherrand=randint(num,N,3); score = zeros(maxgen,N); while generation<=maxgen ind=randperm(N-2)+2; % 随机配对交叉 A=fatherrand(:,ind(1:(N-2)/2)); B=fatherrand(:,ind((N-2)/2+1:end)); % 多点交叉 rnd=rand(num,(N-2)/2); ind=rnd tmp=A(

32、ind); A(ind)=B(ind); B(ind)=tmp; % % 两点交叉 % for kk=1:(N-2)/2 % rndtmp=randint(1,1,num)+1; % tmp=A(1:rndtmp,kk); % A(1:rndtmp,kk)=B(1:rndtmp,kk); % B(1:rndtmp,kk)=tmp; % end fatherrand=[fatherrand(:,1:2),A,B]; % 变异

33、rnd=rand(num,N); ind=rnd [m,n]=size(ind); tmp=randint(m,n,2)+1; tmp(:,1:2)=0; fatherrand=tmp+fatherrand; fatherrand=mod(fatherrand,3); % fatherrand(ind)=tmp; %评价、选择 scoreN=scorefun(fatherrand,D);% 求得N个个体的评价函数 score(generation,:)=scoreN; [sco

34、reSort,scoreind]=sort(scoreN); sumscore=cumsum(scoreSort); sumscore=sumscore./sumscore(end); childind(1:2)=scoreind(end-1:end); for k=3:N tmprnd=rand; tmpind=tmprnd difind=[0,diff(tmpind)]; if ~any(difind) difind(1)=1; end

35、 childind(k)=scoreind(logical(difind)); end fatherrand=fatherrand(:,childind); generation=generation+1; end % score maxV=max(score,[],2); minV=11*300-maxV; plot(minV,'*');title('各代的目标函数值'); F4=D(:,4); FF4=F4-fatherrand(:,1); FF4=max(FF4,1); D(:,5)=FF4; sa

36、ve DData D function D=code load youhua.mat % properties F2 and F3 F1=A(:,1); F2=A(:,2); F3=A(:,3); if (max(F2)>1450)||(min(F2)<=900) error('DATA property F2 exceed it''s range (900,1450]') end % get group property F1 of data, according to F2 value F4=zeros(size(F1)); fo

37、r ite=11:-1:1 index=find(F2<=900+ite*50); F4(index)=ite; end D=[F1,F2,F3,F4]; function ScoreN=scorefun(fatherrand,D) F3=D(:,3); F4=D(:,4); N=size(fatherrand,2); FF4=F4*ones(1,N); FF4rnd=FF4-fatherrand; FF4rnd=max(FF4rnd,1); ScoreN=ones(1,N)*300*11; % 这里有待优化 for k=1

38、N FF4k=FF4rnd(:,k); for ite=1:11 F0index=find(FF4k==ite); if ~isempty(F0index) tmpMat=F3(F0index); tmpSco=sum(tmpMat); ScoreBin(ite)=mod(tmpSco,300); end end Scorek(k)=sum(ScoreBin); end ScoreN=ScoreN-Scorek;

39、 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 遗传算法程序(三): %IAGA function best=ga clear MAX_gen=200; %最大迭代步数 best.max_f=0; %当前最大的适应度 STOP_f=14.5; %停止循环的适应度 RANGE=[0 255];

40、 %初始取值范围[0 255] SPEEDUP_INTER=5; %进入加速迭代的间隔 advance_k=0; %优化的次数 popus=init; %初始化 for gen=1:MAX_gen fitness=fit(popus,RANGE); %求适应度 f=fitness.f; picked=choose(popus,fitness); %选择 popus=intercross(popus,picked); %杂交 popus=aberran

41、ce(popus,picked); %变异 if max(f)>best.max_f advance_k=advance_k+1; x_better(advance_k)=fitness.x; best.max_f=max(f); best.popus=popus; best.x=fitness.x; end if mod(advance_k,SPEEDUP_INTER)==0 RANGE=minmax(x_better);

42、 RANGE advance=0; end end return; function popus=init%初始化 M=50;%种群个体数目 N=30;%编码长度 popus=round(rand(M,N)); return; function fitness=fit(popus,RANGE)%求适应度 [M,N]=size(popus); fitness=zeros(M,1);%适应度 f=zeros(M,1);%函数值 A=RANGE(1);B=RANGE(2);%初始取值范围[0 255] for m

43、1:M x=0; for n=1:N x=x+popus(m,n)*(2^(n-1)); end x=x*((B-A)/(2^N))+A; for k=1:5 f(m,1)=f(m,1)-(k*sin((k+1)*x+k)); end end f_std=(f-min(f))./(max(f)-min(f));%函数值标准化 fitness.f=f;fitness.f_std=f_std;fitness.x=x; return; function picked=choose(popu

44、s,fitness)%选择 f=fitness.f;f_std=fitness.f_std; [M,N]=size(popus); choose_N=3; %选择choose_N对双亲 picked=zeros(choose_N,2); %记录选择好的双亲 p=zeros(M,1); %选择概率 d_order=zeros(M,1); %把父代个体按适应度从大到小排序 f_t=sort(f,'descend');%将适应度按降序排列 for k=1:M x=find(f==f_t(k));%降序排列

45、的个体序号 d_order(k)=x(1); end for m=1:M popus_t(m,:)=popus(d_order(m),:); end popus=popus_t; f=f_t; p=f_std./sum(f_std); %选择概率 c_p=cumsum(p)'; %累积概率 for cn=1:choose_N picked(cn,1)=roulette(c_p); %轮盘赌 picked(cn,2)=roulette(c_p);

46、 %轮盘赌 popus=intercross(popus,picked(cn,:));%杂交 end popus=aberrance(popus,picked);%变异 return; function popus=intercross(popus,picked) %杂交 [M_p,N_p]=size(picked); [M,N]=size(popus); for cn=1:M_p p(1)=ceil(rand*N);%生成杂交位置 p(2)=ceil(rand*N); p=sort(p); t=popus(picked(cn

47、1),p(1):p(2)); popus(picked(cn,1),p(1):p(2))=popus(picked(cn,2),p(1):p(2)); popus(picked(cn,2),p(1):p(2))=t; end return; function popus=aberrance(popus,picked) %变异 P_a=0.05;%变异概率 [M,N]=size(popus); [M_p,N_p]=size(picked); U=rand(1,2); for kp=1:M_p if U(2)>=P_a %如果大于变

48、异概率,就不变异 continue; end if U(1)>=0.5 a=picked(kp,1); else a=picked(kp,2); end p(1)=ceil(rand*N);%生成变异位置 p(2)=ceil(rand*N); if popus(a,p(1))==1%0 1变换 popus(a,p(1))=0; else popus(a,p(1))=1; end if popus(a,p(2

49、))==1 popus(a,p(2))=0; else popus(a,p(2))=1; end end return; function picked=roulette(c_p) %轮盘赌 [M,N]=size(c_p); M=max([M N]); U=rand; if Uc_p(m) & U

50、 end end 全方位的两点杂交、两点变异的改进的加速遗传算法(IAGA) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服