1、2022年人教版七7年级下册数学期末质量监测含答案一、选择题1的值是()A3B3C3D92下列图案中,是通过下图平移得到的是( )ABCD3点在( )A第一象限B第二象限C第三象限D第四象限4下列命题:(1)无理数是无限小数;(2)过一点有且只有一条直线与已知直线平行;(3)过一点有且只有一条直线与已知直线垂直;(4)平方根等于它本身的数是0和1,其中是假命题的个数有( )A1个B2个C3个D4个5如图,点E在BA的延长线上,能证明BECD是()AEAD=BBBAD=BCDCEAD=ADCDBCD+D=1806若一个正数的两个平方根分别是2m+6和m18,则5m+7的立方根是( )A9B3C2
2、D97一副直角三角尺如图摆放,点D在BC的延长线上,点E在AC上,EFBC,BEDF90,A30,F45,则CED的度数是()A10B15C20D258如图,点,点,点,点,按照这样的规律下去,点的坐标为( )ABCD九、填空题99的算术平方根是 十、填空题10将点先关于x轴对称,再关于y轴对称的点的坐标为_十一、填空题11如图,AD、AE分别是ABC的角平分线和高,B=60,C=70,则EAD=_十二、填空题12如图,已知AB/EF,B=40,E=30,则C-D的度数为_十三、填空题13如图,在中,若将沿折叠,使点与点重合,若的周长为的周长为,则_十四、填空题14如图,按照程序图计算,当输入
3、正整数时,输出的结果是,则输入的的值可能是_十五、填空题15若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为_.十六、填空题16如图,在平面直角坐标系中,一动点从原点O出发,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,1),P5(2,1),P6(2,0),则P2020的坐标是_十七、解答题17计算:(1)利用平方根意义求x值: (2)十八、解答题18求下列各式中实数的x值(1)25x2360(2)|x+2|十九、解答题19已知如图,求证:.完成下面的证明过程:证明:,(_)_(已知).(_).,(已知)又,(_).(_)二十、解答题20如
4、图,在平面直角坐标系中(1)写出各顶点的坐标;(2)求出的面积;(3)若把向上平移2个单位长度,再向右平移1个单位长度后得,请画出,并写出,的坐标二十一、解答题21一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根二十二、解答题22(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是 (2)为了增加小区的绿化面积,幸福公园准备修建一个面积121m2的草坪,草坪周围用篱笆围绕现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由;(3)在(2)的方案中,审
5、批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21m2,请你根据此方案求出各小路的宽度(取整数)二十三、解答题23汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足假定这一带水域两岸河堤是平行的,即,且(1)求、的值;(2)如图2,两灯同时转动,在灯射出的光束到达之前
6、,若两灯射出的光束交于点,过作交于点,若,求的度数;(3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行?二十四、解答题24如图1,E点在上,(1)求证:(2)如图2,平分,与的平分线交于H点,若比大,求的度数(3)保持(2)中所求的的度数不变,如图3,平分平分,作,则的度数是否改变?若不变,请直接写出答案;若改变,请说明理由二十五、解答题25(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为1,反射光线 OB 与水平镜面夹角为2,则1=2 .
7、(现象解释)如图 2,有两块平面镜 OM,ON,且 OMON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 ABCD.(尝试探究)如图 3,有两块平面镜 OM,ON,且MON =55 ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求BEC 的大小.(深入思考)如图 4,有两块平面镜 OM,ON,且MON = ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,BED= , 与 之间满足的等量关系是 .(直接写出结果)【参考答案】一、选择题1B解析:B【分析】根据表示9的算术平方根,而9的算术平方根
8、是3,进而得出答案【详解】解:因为32=9,所以=3,故选:B【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的前提2C【分析】根据平移的性质,即可解答【详解】由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现故选C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变解析:C【分析】根据平移的性质,即可解答【详解】由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现故选C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,掌握平移的性质是解题的关键3C【分析】根据平面直角坐标系象限的符合特点可直接进行排除选
9、项【详解】解:在平面直角坐标系中,第一象限的符合为“+、+”,第二象限的符合为“-、+”;第三象限的符合为“-、-”,第四象限的符合为“+、-”,由此可得点在第三象限;故选C【点睛】本题主要考查平面直角坐标系中象限的符合特点,熟练掌握平面直角坐标系中象限的符合特点是解题的关键4C【分析】根据无理数的定义,平行线公理,垂线的性质,平方根的定义逐项判断即可【详解】解:(1)应该是无理数是无限不循环小数,是无限小数,故(1)是真命题;(2)应该是过直线外一点,有且只有一条直线与已知直线平行,故(2)是假命题;(3)应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故(3)是假命题;(4)1的平
10、方根 ,故(4)是假命题;所以假命题的个数有3个,故选:C【点睛】本题主要考查了无理数的定义,平行线公理,垂线的性质,平方根的定义,熟练掌握相关知识点是解题的关键5C【分析】根据平行线的判定定理对四个选项进行逐一判断即可【详解】解:A、若EAD=B,则ADBC,故此选项错误;B、若BAD=BCD,不可能得到BECD,故此选项错误;C、若EAD=ADC,可得到BECD,故此选项正确;D、若BCD+D=180,则BCAD,故此选项错误故选:C【点睛】本题考查了平行线的判定定理,熟练掌握平行线的判定方法是解题的关键6B【分析】根据立方根与平方根的定义即可求出答案【详解】解:由题意可知:2m+6+m1
11、80,m4,5m+727,27的立方根是3,故选:B【点睛】考核知识点:平方根、立方根理解平方根、立方根的定义和性质是关键7B【分析】由B=EDF=90,A=30,F=45,利用三角形内角和定理可得出ACB=60,DEF=45,由EFBC,利用“两直线平行,内错角相等”可得出CEF的度数,结合CED=CEF-DEF,即可求出CED的度数,此题得解【详解】解:B=90,A=30,ACB=60EDF=90,F=45,DEF=45EFBC,CEF=ACB=60,CED=CEF-DEF=60-45=15故选:B【点睛】本题考查了三角形内角和定理以及平行线的性质,牢记平行线的性质是解题的关键8B【分析】
12、观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),A2n1(3n1,n1),由2021是奇数,且20212n1,则可求A2n1(3032,10解析:B【分析】观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),A2n1(3n1,n1),由2021是奇数,且20212n1,则可求A2n1(3032,1010)【详解】故选B【点睛】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键九、填空题9【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】,9算术平方根为3故答案为3【点睛】本题考查了算术
13、平方根,熟练掌握算术平方根的概念是解题的关键.解析:【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】,9算术平方根为3故答案为3【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.十、填空题10(1,-4)【分析】直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解【详解】设关于x轴对称的点为则点的坐标为解析:(1,-4)【分析】直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解【详解】设关于x轴对称的点为则点的坐标
14、为(-1,-4)设点和点关于y轴对称则的坐标为(1,-4)故答案为:(1,-4)【点睛】本题考查了关于坐标轴对称的点的坐标特征,关于x轴对称的两点,横坐标相同,纵坐标互为相反数,关于y轴对称的两点,纵坐标相同,横坐标互为相反数十一、填空题11;【详解】解:由题意可知,B=60,C=70,所以,所以,在三角形BAE中,所以EAD=5故答案为:5【点睛】本题属于对角平分线和角度基本知识的变换求解解析:;【详解】解:由题意可知,B=60,C=70,所以,所以,在三角形BAE中,所以EAD=5故答案为:5【点睛】本题属于对角平分线和角度基本知识的变换求解十二、填空题1210【分析】过点C作CGAB,过
15、点D作DHEF,根据平行线的性质可得ABCGDHEF,从而可得BCG=B=40,EDH=E=30,DCG=CDH,即可求解【详解】解析:10【分析】过点C作CGAB,过点D作DHEF,根据平行线的性质可得ABCGDHEF,从而可得BCG=B=40,EDH=E=30,DCG=CDH,即可求解【详解】解:如图,过点C作CGAB,过点D作DHEF,AB/EF,ABCGDHEF,B=40,E=30,BCG=B=40,EDH=E=30,DCG=CDH,BCD-CDE=BCG-EDH=40-30=10故答案为:10【点睛】本题主要考查了平行线的性质,准确作出辅助线是解题的关键十三、填空题13【分析】根据翻
16、折得到,根据,即可求出AC,再根据E是中点即可求解【详解】沿翻折使与重合故答案为:【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性解析:【分析】根据翻折得到,根据,即可求出AC,再根据E是中点即可求解【详解】沿翻折使与重合故答案为:【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质十四、填空题14、【详解】解:y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)3=17;如果三次才输出结果:则x=(17-2)3=5;解析:、【详解】解:y=3x+2,如果直接输出结果,则3x+2=161,解得:x=
17、53;如果两次才输出结果:则x=(53-2)3=17;如果三次才输出结果:则x=(17-2)3=5;如果四次才输出结果:则x=(5-2)3=1;则满足条件的整数值是:53、17、5、1故答案为53、17、5、1点睛:此题的关键是要逆向思维它和一般的程序题正好是相反的十五、填空题15或【详解】【分析】分x0,0x3,x3三种情况分别讨论即可得.【详解】当x0时,2x0,x-30,由题意则有-2x-(x-3)=5,解得:x=,当0x3时,2x0,x-3解析:或【详解】【分析】分x0,0x3,x3三种情况分别讨论即可得.【详解】当x0时,2x0,x-30,由题意则有-2x-(x-3)=5,解得:x=
18、,当0x3时,2x0,x-30,x-30,由题意则有2x+x-3=5,解得:x=3(不合题意,舍去),综上,x的值为2或,故答案为2或.【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键.十六、填空题16(673,-1)【分析】先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+4(2n+1,-1),再根据P6336(2336,0),可得P2016(672,0),进而解析:(673,-1)【分析】先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+4(2n+1,-1),再根据P6336(2336,0),可得P2016(
19、672,0),进而得到P2020(673,-1)【详解】解:由图可得,P6(2,0),P12(4,0),P6n(2n,0),P6n+4(2n+1,-1),20166=336,P6336(2336,0),即P2016(672,0),P2020(673,-1)故答案为:(673,-1)【点睛】本题主要考查了点的坐标变化规律,解决问题的关键是根据图形的变化规律得到P6n(2n,0)十七、解答题17(1)或 (2)【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案【详解】解:(1) ,是的平方根, 或 (2) 【点睛解析:(1)或 (2)【分析】(1)由
20、平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案【详解】解:(1) ,是的平方根, 或 (2) 【点睛】本题考查的是平方根的定义,实数的运算,求解算术平方根,立方根,绝对值的化简,掌握以上知识是解题的关键十八、解答题18(1)x;(2)x2或x2+【分析】(1)先移项,再将两边都除以25,再开平方即可求解;(2)根据绝对值的性质即可求解【详解】解:(1)25x2360,25x2解析:(1)x;(2)x2或x2+【分析】(1)先移项,再将两边都除以25,再开平方即可求解;(2)根据绝对值的性质即可求解【详解】解:(1)25x2360,25x236,x2,x;(2
21、)|x+2|,x+2,x2或x2+【点睛】本题主要考查了绝对值及平方根,注意一个正数的平方根有两个,它们互为相反数十九、解答题19见解析【分析】根据平行线的判定和性质定理以及对顶角相等即可得到结论【详解】解:证明:AOB=80,COD=AOB=80(对顶角相等)BCEF(已知),COD+解析:见解析【分析】根据平行线的判定和性质定理以及对顶角相等即可得到结论【详解】解:证明:AOB=80,COD=AOB=80(对顶角相等)BCEF(已知),COD+1=180(两直线平行,同旁内角互补)1=1001+C=160(已知),C=160-1=60又B=60,B=CABCD(内错角相等,两直线平行)A=
22、D(两直线平行,内错角相等)【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等也考查了对顶角的定义二十、解答题20(1)A(-1,-1),B(4,2),C(1,3);(2)7;(3)画图见解析,A1(0,1),B1(5,4),C1(2,5)【分析】(1)根据平面直角坐标系,确定出所求点坐标即可;(2)由长解析:(1)A(-1,-1),B(4,2),C(1,3);(2)7;(3)画图见解析,A1(0,1),B1(5,4),C1(2,5)【分析】(1)根据平面直角坐标系,确定出所求点坐标即可;(2)由长方形面积减去三个直角三角形面积求出所求即可
23、;(3)直接利用平移的性质进而得出对应点坐标进而得出答案【详解】解:(1)由图可知:A(-1,-1),B(4,2),C(1,3);(2)根据题意得:SABC=7;(3)如图所示:A1B1C1为所求,此时A1(0,1),B1(5,4),C1(2,5)【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键二十一、解答题21【分析】根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案【详解】一个正数的两个平方根为和,解得:,是的立方根,解得:,解析:【分析】根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可
24、求得答案【详解】一个正数的两个平方根为和,解得:,是的立方根,解得:,的整数部分是6,则小数部分是:,的平方根为:【点睛】本题考查了平方根的性质,立方根的定义,估算无理数的大小,解题的关键是正确理解平方根的定义以及“夹逼法”的运用二十二、解答题22(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为【分析】(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;(2)根据正方形的周解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为【分析】(1)先求得正方体的一个面的面积,然后依据算术平方
25、根的定义求解即可;(2)根据正方形的周长公式以及圆形的周长公式即可求出答案;(3)根据图形的平移求解【详解】解:(1)正方体有6个面且每个面都相等,正方体的一个面的面积=2 dm2正方形的棱长=dm;故答案为: dm ;(2)甲方案:设正方形的边长为xm,则x2 =121x =11正方形的周长为:4x=44m 乙方案: 设圆的半径rm为,则r2=121r =11圆的周长为:2= 22m 442222(2- 4 2 正方形的周长比圆的周长大 故从节省篱笆费用的角度考虑,选择乙方案建成圆形; (3)依题意可进行如图所示的平移,设小路的宽度为ym ,则 (11 y)2=12121 11 y =10
26、y= 取整数 y =答:根据此方案求出小路的宽度为;【点睛】本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键;二十三、解答题23(1),;(2)30;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;(3)根据灯B的解析:(1),;(2)30;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;(3)根据灯B的要求,t150,在这个时间段内A可以转3次,分情况讨论【详
27、解】解:(1)又,;(2)设灯转动时间为秒,如图,作,而 ,(3)设灯转动秒,两灯的光束互相平行依题意得当时,两河岸平行,所以两光线平行,所以所以,即:,解得;当时,两光束平行,所以两河岸平行,所以所以,解得;当时,图大概如所示,解得(不合题意)综上所述,当秒或82.5秒时,两灯的光束互相平行【点睛】这道题考察的是平行线的性质和一元一次方程的应用根据平行线的性质找到对应角列出方程是解题的关键二十四、解答题24(1)见解析;(2)100;(3)不变,40【分析】(1)如图1,延长交于点,根据,可得,所以,可得,又,进而可得结论;(2)如图2,作,根据,可得,根据平行线的性质得角之间的关系,再解析
28、:(1)见解析;(2)100;(3)不变,40【分析】(1)如图1,延长交于点,根据,可得,所以,可得,又,进而可得结论;(2)如图2,作,根据,可得,根据平行线的性质得角之间的关系,再根据比大,列出等式即可求的度数;(3)如图3,过点作,设直线和直线相交于点,根据平行线的性质和角平分线定义可求的度数【详解】解:(1)证明:如图1,延长交于点,;(2)如图2,作,平分,平分,设,比大,解得的度数为;(3)的度数不变,理由如下:如图3,过点作,设直线和直线相交于点,平分,平分,由(2)可知:,【点睛】本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质二十五、解答题25【现象解释
29、】见解析;【尝试探究】BEC = 70;【深入思考】 b = 2a.【分析】现象解释根据平面镜反射光线的规律得1=2,3=4,再利用2+3=90得出1+2+解析:【现象解释】见解析;【尝试探究】BEC = 70;【深入思考】 b = 2a.【分析】现象解释根据平面镜反射光线的规律得1=2,3=4,再利用2+3=90得出1+2+3+4=180,即可得出DCB+ABC=180,即可证得ABCD;尝试探究根据三角形内角和定理求得2+3=125,根据平面镜反射光线的规律得1=2,3=4,再利用平角的定义得出1+2+EBC+3+4+BCE=360,即可得出EBC+BCE=360-250=110,根据三角
30、形内角和定理即可得出BEC=180-110=70;深入思考利用平角的定义得出ABC=180-22,BCD=180-23,利用外角的性质BED=ABC-BCD=(180-22)-(180-23)=2(3-2)=,而BOC=3-2=,即可证得=2【详解】现象解释如图2,OMON,CON=90,2+3=901=2,3=4,1+2+3+4=180,DCB+ABC=180,ABCD;【尝试探究】如图3,在OBC中,COB=55,2+3=125,1=2,3=4,1+2+3+4=250,1+2+EBC+3+4+BCE=360,EBC+BCE=360-250=110,BEC=180-110=70;【深入思考】如图4,=2,理由如下:1=2,3=4,ABC=180-22,BCD=180-23,BED=ABC-BCD=(180-22)-(180-23)=2(3-2)=,BOC=3-2=,=2【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100