1、人教版初二上册压轴题强化数学质量检测试题(一)1等边中,点、分别在边、上,且,连接、交于点(1)如图1,求的度数;图1(2)连接,若,求的值;(3)如图2,若点为边的中点,连接,且,则的大小是_图22如图,中,(1)如图1,求证:;(2)如图2,请直接用几何语言写出、的位置关系_;(3)证明(2)中的结论3已知:,(1)当a,b满足时,连接AB,如图1 求:的值点M为线段AB上的一点(点M不与A,B重合,其中BMAM),以点M为直角顶点,OM为腰作等腰直角MON,连接BN,求证:(2)当,连接AB,若点,过点D作于点E,点B与点C关于x轴对称,点F是线段DE上的一点(点F不与点E,D重合)且满
2、足,连接AF,试判断线段AC与AF之间的位置关系和数量关系,并证明你的结论4在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a8b+200(1)求a,b的值;(2)点P在直线AB的右侧;且APB45,若点P在x轴上(图1),则点P的坐标为 ;若ABP为直角三角形,求P点的坐标5如图,直线AB与x轴负半轴、y轴正半轴分别交于A(a,0)、B(0,b)两点(1)若b210b250,判断AOB的形状,并说明理由;(2)如图,在(1)的条件下,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AMOQ于M,BNOQ于N,若AM=4,MN=7,求BN的长
3、;(3)如图,若即点A不变,点B在y轴正半轴上运动,分别以OB、AB为直角边在第一、第二象限作等腰直角OBF和等腰直角ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请求其取值范围6ABC、DPC都是等边三角形(1)如图1,求证:APBD;(2)如图2,点P在ABC内,M为AC的中点,连PM、PA、PB,若PAPM,且PB2PM求证:BPBD;判断PC与PA的数量关系并证明7已知:为的中线,分别以和为一边在的外部作等腰三角形和等腰三角形,且,连接,(1)如图1,若,求的度数(2)如图1,求证:(3)如图2,设交于点,交于点与交于点,若点为
4、中点,且,请探究和的数量关系,并直接写出答案(不需要证明)8如图,在等边ABC中,线段AM为BC边上的中线动点D在直线AM上时,以CD为一边在CD的下方作等边CDE,连结BE(1)求CAM的度数;(2)若点D在线段AM上时,求证:ADCBEC;(3)当动D在直线AM上时,设直线BE与直线AM的交点为O,试判断AOB是否为定值?并说明理由【参考答案】2(1);(2);(3)【分析】(1)由是等边三角形,可得出,再利用,可证,得出,由可求出,最后由补角定义求出.(2)在上取点,使,由可证,再利用,可证明,进而求出,再用补角的性质得知,在解析:(1);(2);(3)【分析】(1)由是等边三角形,可得
5、出,再利用,可证,得出,由可求出,最后由补角定义求出.(2)在上取点,使,由可证,再利用,可证明,进而求出,再用补角的性质得知,在中利用外角的性质可求出,进而证出为等腰三角形,最后可证出即可求解.(3)延长至,使为等边三角形,延长交于,可得出,进而得出,利用角的和差得出,则证出,进而证出,再利用,证出为等边三角形,进而证出.【详解】(1)是等边三角形,在和中,(2)在上取点,使由(1)知,又,在和中,(3)提示:目测即得答案详细理由如下:由(1)知延长至,使为等边三角形延长交于 ,在和中, ,, 在和中, ,为等边三角形, 【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角
6、形的判定和性质,熟练掌握全等三角形的判定和性质及等边三角形的判定和性质是解题的关键.3(1)见解析;(2);(3)见解析【分析】(1)根据垂直的定义可得ADC=E=90,根据余角的性质可得ACD=BAE,然后根据AAS即可证得结论;(2)由于要得出、的位置关系,结解析:(1)见解析;(2);(3)见解析【分析】(1)根据垂直的定义可得ADC=E=90,根据余角的性质可得ACD=BAE,然后根据AAS即可证得结论;(2)由于要得出、的位置关系,结合图形可猜想:;(3)如图,作CPAC于点C,延长FD交CP于点P,先证明BAEFCP,可得3=P,AB=CP,然后证明ACDPCD,可得4=P,进一步
7、即可推出4+2=90,问题得证【详解】解:(1)证明:,ADC=E=90,DAC+ACD=90,DAC+BAE=90,ACD=BAE,在DAC和EBA中,ADC=E,ACD=BAE,AC=AB,(AAS);(2)结合图形可得:;故答案为:;(3)证明:如图,作CPAC于点C,延长FD交CP于点P,AF=CE,AE=CF,1=2,BAE=FCP=90,BAEFCP,3=P,AB=CP,ABC=ACB=45,PCP=90,AB=CP,FCD=45,AC=PC,ACB=PCD,CD=CD,ACDPCD,4=P,3=P,3=4,3+2=90,4+2=90,AGE=90,即【点睛】本题考查了等腰直角三角
8、形的性质、全等三角形的判定和性质,正确添加辅助线、熟练掌握全等三角形的判定和性质是解题的关键4(1)10;证明见解析;(2),理由见解析;【分析】(1)利用可求出,即可求出;作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;(2)证明,得到,再利用等量代换证明解析:(1)10;证明见解析;(2),理由见解析;【分析】(1)利用可求出,即可求出;作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;(2)证明,得到,再利用等量代换证明;(1)解:由图可知,即,;作交AB与点C,交AB与点F,如图,在和中,即,即,(2)解:,理由如下:假设DE交BC于点G,有已知可知:,且,在和中
9、,【点睛】本题考查三角形全等的判定,等量代换,绝对值非负性的应用,直角坐标系中的图形,(1)的关键是证明,(2)的关键证明5(1)a2,b4;(2)(4,0);P点坐标为(4,2),(2,2)【分析】(1)利用非负数的性质解决问题即可(2)根据等腰直角三角形的性质即可解决问题分两种情形:解析:(1)a2,b4;(2)(4,0);P点坐标为(4,2),(2,2)【分析】(1)利用非负数的性质解决问题即可(2)根据等腰直角三角形的性质即可解决问题分两种情形:如图2中,若ABP=90,过点P作PCOB,垂足为C如图3中,若BAP=90,过点P作PDOA,垂足为D分别利用全等三角形的性质解决问题即可【
10、详解】(1)a2+4a+4+b28b+160(a+2)2+(b4)20a2,b4(2)如图1中,APB45,POB90,OPOB4,P(4,0)故答案为(4,0)a2,b4OA2OB4又ABP为直角三角形,APB45只有两种情况,ABP90或BAP90如图2中,若ABP90,过点P作PCOB,垂足为CPCBBOA90,又APB45,BAPAPB45,BABP,又ABO+OBPOBP+BPC90,ABOBPC,ABOBPC(AAS),PCOB4,BCOA2,OCOBBC422,P(4,2)如图3中,若BAP90,过点P作PDOA,垂足为DPDAAOB90,又APB45,ABPAPB45,APAB
11、,又BAD+DAP90,DPA+DAP90,BADDPA,BAOAPP(AAS),PDOA2,ADOB4,ODAD0A422,P(2,2)综上述,P点坐标为(4,2),(2,2)【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题6(1)AOB为等腰直角三角形;理由见解析(2)BN=3(3)PB的长为定值;【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OAOB,即可确定AOB的形状;(2)解析:(1)AOB为等腰直角三角形;理由见解析(2)BN=3(3)
12、PB的长为定值;【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OAOB,即可确定AOB的形状;(2)由OAOB,利用AAS得到AMOONB,用对应线段相等求长度;(3)如图,作EKy轴于K点,利用AAS得到AOBBKE,利用全等三角形对应边相等得到OABK,EKOB,再利用AAS得到PBFPKE,寻找相等线段,并进行转化,求PB的长(1)解:结论:OAB是等腰直角三角形;理由如下:b210b250,即,解得:,A(5,0),B(0,5),OAOB5,AOB是等腰直角三角形(2)解:AMOQ,BNOQ,在AMO与ONB中,AMOONB(AAS),AMON4,BNOM,MN7,OM
13、3,BNOM3(3)解:结论:PB的长为定值理由如下,作EKy轴于K点,如图所示:ABE为等腰直角三角形,ABBE,ABE90,EBKABO90,EBKBEK90,ABOBEK,在AOB和BKE中,AOBBKE(AAS),OABK,EKOB,OBF为等腰直角三角形,OBBF,EKBF,在EKP和FBP中,PBFPKE(AAS),PKPB,PBBKOA【点睛】本题属于三角形综合题,考查非负数的性质,全等三角形的判定与性质、等腰直角三角形的性质等知识,熟练掌握全等三角形的判定与性质是解本题的关键7(1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【分析】(1)证明BCDACP(S
14、AS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接C解析:(1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接CK证明AMPCMK(SAS),推出MP=MK,AP=CK,APM=K=90,再证明PDBPCK(SSS),可得结论;结论:PC=2PA想办法证明DPB=30,可得结论(1)证明:如图1中,ABC,CDP都是等边三角形,CB=CA,CD=CP,ACB=DCP=60,BCD=ACP,在BCD和ACP中,BCDACP(SAS),BD=AP;(2)证明:如图
15、2中,延长PM到K,使得MK=PM,连接CKAPPM,APM=90,在AMP和CMK中,AMPCMK(SAS),MP=MK,AP=CK,APM=K=90,同法可证BCDACP,BD=PA=CK,PB=2PM,PB=PK,PD=PC,PDBPCK(SSS),PBD=K=90,PBBD解:结论:PC=2PAPDBPCK,DPB=CPK,设DPB=CPK=x,则BDP=90-x,APC=CDB,90+x=60+90-x,x=30,DPB=30,PBD=90,PD=2BD,PC=PD,BD=PA,PC=2PA【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,直角三角形30角
16、的性质等知识,解题的关键是学会添加常用辅助线,关注全等三角形解决问题8(1)BAC=50;(2)见解析;(3)【分析】(1)利用三角形内角和定理求出EAB和CAF,再根据构建方程即可解决问题;(2)延长AD至H,使DH=AD,连接BH,想办法证解析:(1)BAC=50;(2)见解析;(3)【分析】(1)利用三角形内角和定理求出EAB和CAF,再根据构建方程即可解决问题;(2)延长AD至H,使DH=AD,连接BH,想办法证明ABHEAF即可解决问题;(3)先证明ACDFAG,推出ACD=FAG,再证明BCF=150即可(1)AE=AB,AEB=ABE=65,EAB=50,AC=AF,ACF=AF
17、C=75,CAF=30,EAF+BAC=180,EAB+2ABC+FAC=180,50+2BAC+30=180,BAC=50(2)证明:延长AD至H,使DH=AD,连接BH,EF=2AD,AH=EF,在BDH和CDA中,BDHCDA,HB=AC=AF,BHD=CAD,ACBH,ABH+BAC=180,EAF+BAC=180,EAF=ABH,在ABH和EAF中,ABHEAF,AEF=ABH,EF=AH=2AD,(3)结论:GAF-CAF=60由(1)得,AD=EF,又点G为EF中点,EG=AD,在EAG和ABD中,EAGABD,EAG=ABC=60,AEB是等边三角形,ABE=60,CBM=60
18、,在ACD和FAG中,ACDFAG,ACD=FAG,AC=AF,ACF=AFC,在四边形ABCF中,ABC+BCF+CFA+BAF=360,60+2BCF=360,BCF=150,BCA+ACF=150,GAF+(180-CAF)=150,GAF-CAF=60.【点睛】本题考查三角形综合题,涉及全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题9(1)30;(2)见解析;(3)是定值,理由见解析【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出,由等式的性质就可以,根据就可以得出;(3解析:(1)30;(
19、2)见解析;(3)是定值,理由见解析【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出,由等式的性质就可以,根据就可以得出;(3)分情况讨论:当点在线段上时,如图1,由(2)可知,就可以求出结论;当点在线段的延长线上时,如图2,可以得出而有而得出结论;当点在线段的延长线上时,如图3,通过得出同样可以得出结论【详解】解:(1)是等边三角形,线段为边上的中线,故答案为:30;(2)与都是等边三角形,在和中,;(3)是定值,理由如下:当点在线段上时,如图1,由(2)可知,则,又,是等边三角形,线段为边上的中线,平分,即,当点在线段的延长线上时,如图2,与都是等边三角形,在和中,同理可得:,当点在线段的延长线上时,如图3,与都是等边三角形,在和中,同理可得:,综上,当动点在直线上时,是定值,【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100