1、八年级数学上册压轴题模拟质量检测试卷带解析(一)1(初步探索)(1)如图:在四边形中,、分别是、上的点,且,探究图中、之间的数量关系(1)(1)小明同学探究此问题的方法是:延长到点,使连接,先证明,再证明,可得出结论,他的结论应是_;(2)(灵活运用)(2)如图2,若在四边形中,、分别是、上的点,且,上述结论是否仍然成立,并说明理由;2已知,A(0,a),B(b,0),点为x轴正半轴上一个动点,ACCD,ACD90(1)已知a,b满足等式a +b+b2+4b4求A点和B点的坐标;如图1,连BD交y轴于点H,求点H的坐标;(2)如图2,已知a+b=0,OCOB,作点B关于y轴的对称点E,连DE,
2、点F为DE的中点,连OF和CF,请补全图形,探究OF与CF有什么数量和位置关系,并证明你的结论3在平面直角坐标系中,点A的坐标是,点B的坐标且a,b满足(1)求A、B两点的坐标;(2)如图(1),点C为x轴负半轴一动点,于D,交y轴于点E,求证:平分(3)如图(2),点F为的中点,点G为x正半轴点右侧的一动点,过点F作的垂线,交y轴的负半轴于点H,那么当点G的位置不断变化时,的值是否发生变化?若变化,请说明理由;若不变化,请求出相应结果4在平面直角坐标系中,点在第一象限,(1)如图,求点的坐标(2)如图,作的角平分线,交于点,过点作于点,求证:(3)若点在第二象限,且为等腰直角三角形,请直接写
3、出所有满足条件的点的坐标5如图1,在平面直角坐标系中, ,动点从原点出发沿轴正方向以的速度运动,动点也同时从原点出发在轴上以的速度运动,且满足关系式,连接,设运动的时间为秒.(1)求的值;(2)当为何值时,(3)如图2,在第一象限存在点,使,求.6阅读理解题:定义:如果一个数的平方等于1,记为i21,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似例如:计算:(2i)+(5+3i)(2+5)+(1+3)i7+2i;(1+i)(2i)12i+2ii22+(1+2)i+13+i;根据以上信息,完
4、成下列问题:(1)填空:i3 ,i4 ,i+i2+i3+i2021 ;(2)计算:(1+i)(34i)(2+3i)(23i);(3)已知a+bi(a,b为实数),求的最小值7如图,在ABC中,点D为直线BC上一动点,DAE90,ADAE(1)如果BAC90,ABAC如图1,当点D在线段BC上时,线段CE与BD的位置关系为_,数量关系为_;如图2,当点D在线段BC的延长线上时,中的结论是否仍然成立?请说明理由;(2)如图3,若ABC是锐角三角形,ACB=45,当点D在线段BC上运动时,证明:CEBD8如图1已知点A,B分别在坐标轴上,点C(3,3),CABA于点A,且BACA,CA,CB分别交坐
5、标轴于D,E(1)填空:点B的坐标是 ;(2)如图2,连接DE,过点C作CHCA于C,交x轴于点H,求证:ADBCDE;(3)如图3,点F(6,0),点P在第一象限,连PF,过P作PMPF交y轴于点M,在PM上截取PNPF,连PO,过P作OPG45交BN于G求证:点G是BN中点【参考答案】2(1)(初步探索)结论:BAEFADEAF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定ABEADG,进而得出BAE=D解析:(1)(初步探索)结论:BAEFADEAF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,
6、可判定ABEADG,进而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF,据此得出结论;(2)延长FD到点G,使DG=BE,连接AG,先判定ABEADG,进而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF(1)解:BAEFADEAF理由:如图1,延长FD到点G,使DGBE,连接AG,DGBE,ABEADG,BAEDAG,AEAG,EF=BE+FD,DGBE,且AEAG,AFAF,AEFAGF,EAFGAFDAGDAFBAEDAF故答案为:BAEFADEAF;(2)如图2,延长FD到
7、点G,使DGBE,连接AG, BADF180,ADGADF180,BADG,又ABAD,ABEADG(SAS),BAEDAG,AEAG,EFBEFDDGFDGF,AFAF,AEFAGF(SSS),EAFGAFDAGDAFBAEDAF【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形解题时注意:同角的补角相等3(1)A(0,2),B(-2,0);H(0,-2);(2)CFOF,CF=OF,证明见解析【分析】(1)利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案;过C作y解析:(1)A(0,2),B(
8、-2,0);H(0,-2);(2)CFOF,CF=OF,证明见解析【分析】(1)利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案;过C作y轴垂线交BA的延长线于E,然后证明CEACBD,得到OB=OH,即可得到答案;(2)由题意,先证明DFGEFO,然后证明DCGACO,得到OCG是等腰直角三角形,再根据三线合一定理,即可得到结论成立【详解】解:(1),A(0,2),B(2,0);过C作x轴垂线交BA的延长线于E,OA=OB=2,AOB=90,AOB是等腰直角三角形,ABO=45,ECBC,BCE是等腰直角三角形,BC=EC,BCE=90=ACD,ACE=DCB,AC=DC,C
9、EACBD,CBD=E=45,OH=OB=2,H(0,2);(2)补全图形,如图:点B、E关于y轴对称,OB=OE,a+b=0,即OA=OB=OE延长OF至G使FG=OF,连DG,CG,OF=FG,OFE=DFG,EF=DFDFGEFODG=OE=OA,DGF=EOFDGOECDG=DCO;ACO+CAO=ACO+DCO=90,DCO=CAO;CDG=DCO=CAO;CD=AC,OA=DGDCGACOOC=GC,DCG=ACOOCG=90,COF=45,OCG是等腰直角三角形,由三线合一定理得CFOFOCF=COF=45,CF=OF;【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和
10、性质,轴对称的性质,非负性的应用,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题4(1),;(2)证明见解析;(3)不变化,【分析】(1)由非负性可求a,b的值,即可求A、B两点的坐标;(2)过点O作于M,于N,根据全等三角形的判定和性质解答即可;(3)由于点F是等解析:(1),;(2)证明见解析;(3)不变化,【分析】(1)由非负性可求a,b的值,即可求A、B两点的坐标;(2)过点O作于M,于N,根据全等三角形的判定和性质解答即可;(3)由于点F是等腰直角三角形AOB的斜边的中点,所以连接OF,得出OF=BFBFO=GFH,进而得出OFH=BFG,利用等腰直角三角形和全等三角形的判
11、定和性质以及三角形面积公式解答即可【详解】解:(1) , ,即,(2)如图,过点O作于M,于N,根据题意可知,OAOB6在和中, , ,点O一定在CDB的角平分线上,即OD平分CDB(3)如图,连接OF,是等腰直角三角形且点F为AB的中点,OF平分AOB又,又,在和中 ,故不发生变化,且【点睛】本题为三角形综合题,考查非负数的性质,角平分线的判定,等腰直角三角形的性质和判定、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,正确添加辅助线,构造全等三角形解决问题,属于中考压轴题5(1)C;(2)见解析;(3)或或【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐
12、标;(2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论;(3)解析:(1)C;(2)见解析;(3)或或【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标;(2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论;(3)分情况讨论,画出对应的等腰直角三角形的图象,做辅助线构造全等三角形,求出点P坐标【详解】解:如图中,作垂足为,在和中,点坐标;如图,延长相交于点,在和中,在和中,;(3)如图,过点P作轴于点D,在和中,;如图,过点P作轴于点D,在和中,;如图,过点P作轴于点E,过点A作于点D,在和中,设,解得,;综上:点P的坐标是或或
13、【点睛】本题考查坐标和几何综合题,解题的关键是掌握作辅助线构造全等三角形的方法,利用全等三角形的性质求解点坐标,掌握数形结合的思想6(1);(2);(3)【分析】(1)把满足的关系式转化为非负数和的形式即可解答;(2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可;【详解】解:(1)(解析:(1);(2);(3)【分析】(1)把满足的关系式转化为非负数和的形式即可解答;(2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可;【详解】解:(1)(2)当动点沿轴正方向运动时,如解图-2-1:当动点沿轴负方向运动时,如解图-2-2:(3)过作,连在与 ,在与中 ,是等边三角形,
14、又【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线构造三角形是本题的关键7(1)i,1,;(2)i6;(3)的最小值为25【分析】(1)根据题目所给条件可得i3=i2i,i4=i2i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条解析:(1)i,1,;(2)i6;(3)的最小值为25【分析】(1)根据题目所给条件可得i3=i2i,i4=i2i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;(3)根据题目已知条件,a+bi4+3i,求出a、b,即可得出答案【详解】(1
15、)i3i2i1ii,i4i2i21(1)1,设Si+i2+i3+i2021,iSi2+i3+i2021+i2022,(1i)Sii2022,S,故答案为i,1,;(2)(1+i)(34i)(2+3i)(23i)34i+3i4i2(49i2)3i+449i6;(3)a+bi4+3i,a4,b3,的最小值可以看作点(x,0)到点A(0,4),B(24,3)的最小距离,点A(0,4)关于x轴对称的点为A(0,4),连接AB即为最短距离,AB25,的最小值为25【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键8(1)CEBD;CE=BD;结论仍成立,理由见解析;(
16、2)证明见解析【分析】(1)根据BAD=CAE,BA=CA,AD=AE,运用“SAS”证明ABDACE,根据全等三角解析:(1)CEBD;CE=BD;结论仍成立,理由见解析;(2)证明见解析【分析】(1)根据BAD=CAE,BA=CA,AD=AE,运用“SAS”证明ABDACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;先根据“SAS”证明ABDACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到中的结论仍然成立;(2)先过点A作AGAC交BC于点G,画出符合要求的图形,再结合图形判定GADCAE,得出对应角相等,即可得出结论(1)BAD=90
17、DAC,CAE=90DAC,BAD=CAE又 BA=CA,AD=AE,ABDACE(SAS),ACE=B=45,CE=BDACB=B=45,ECB=45+45=90,即 CEBD故答案为:CEBD;CE=BD当点D在BC的延长线上时,的结论仍成立DAE=90,BAC=90,DAE=BAC,DAB=EAC,又AB=AC,AD=AE,DABEAC(SAS),CE=BD,ACE=ABDBAC=90,AB=AC,ABC=45,ACE=45,BCE=ACB+ACE=90,即 CEBD;(2)证明:过点A作AGAC交BC于点G,ACB=45,AGC=45,AC=AG,即ACG是等腰直角三角形,GAD+DA
18、C=90=CAE+DAC,GAD=CAE,又DA=EA,GADCAE(SAS),ACE=AGD=45,BCE=ACB+ACE=90,即CEBD【点睛】此题为三角形综合题,主要考查了全等三角形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解9(1)(0,6)(2)见解析(3)见解析【分析】(1)作CMx轴于M,求出CM= CN= 2,证明BAOACM,推出AO= CM= 2,OB=AM=4,即可得出答案;(2)在解析:(1)(0,6)(2)见解析(3)见解析【分析】(1)作CMx轴于M,求出CM= CN= 2,证明BAOA
19、CM,推出AO= CM= 2,OB=AM=4,即可得出答案;(2)在BD上截取BF= AE,连AF,证BAFCAE,证AFDCED,即可得出答案;(3)作EOOP交PG的延长线于E,连接EB、EN、PB,只要证明四边形ENPB是平行四边形就可以了(1)解:过点C作CGx轴于G,如图所示:C(3,3),CG3,OG3,BOACGA90,ABO+BAOBAO+CAG90,ABOCAG,又ABAC,ABOCAG(AAS),AOCG3,OBAGAO+OG6,点B的坐标是(0,6)(2)证明:如图,过点C作CGx轴于G,CFy轴于F,则CFAO同(1)得:ABOCAG(AAS),AOCG3,CF3,AO
20、CF,CFAODAODCF,AODCFD,AODCFD(ASA),ADCD,CABA,CHCA,BADACH90,又ABOCAG,ABAC,BADACH(ASA),ADCH,ADBAHCCDCH,BACA,ABC是等腰直角三角形,ACB45,HCE90ACB45,DCEHCE45,又CECE,DCEHCE(SAS),CDECHE,ADBCDE(3)证明:过点O作OKOP交PG延长线于K,连接BK、NF,过点P作PLNF于L则OPK是等腰直角三角形,OKPOPK45,OKOP,PNPF,PNF是等腰直角三角形,PFNPNF45,PLNF,FPL45,则OPFOPL+45,GPNOPL45MPO,KOB+BOPFOP+BOP90,KOBFOP,又OBOF6,OKBOPF(SAS),KBPFPN,OKB45+GKBOPFOPL+45,GKBOPLGPN,又KGBPGN,KBGPNG(SAS),BGNG,即点G为BN的中点【点睛】本题是三角形综合题目,考查了全等三角形的判定和性质、坐标与图形性质、等腰直角三角形的判定与性质、平行线的判定与性质、直角三角形的性质等知识,本题综合性强,有一定难度,证明三角形全等是解题的关键,属于中考常考题型
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100