ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:696.54KB ,
资源ID:1735807      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1735807.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(人教版初二数学上册压轴题模拟检测试卷(一)[001].doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教版初二数学上册压轴题模拟检测试卷(一)[001].doc

1、人教版初二数学上册压轴题模拟检测试卷(一)1如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接(1)如图,当点D移动到线段的中点时,与的长度关系是:_(2)如图,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论(3)如图,当点D移动到线段的延长线上,并且时,求的度数2在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点(1)当2a2+4ab+4b2+2a+10时,求A,B的坐标;(2)当a+b0时,如图1

2、,若D与P关于y轴对称,PEDB并交DB延长线于E,交AB的延长线于F,求证:PBPF;如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CPAQ时,求APB的大小3如图,已知CD是线段AB的垂直平分线,垂足为D,C在D点上方,BAC=30,P是直线CD上一动点,E是射线AC上除A点外的一点,PB=PE,连BE(1)如图1,若点P与点C重合,求ABE的度数;(2)如图2,若P在C点上方,求证:PD+AC=CE;(3)若AC=6,CE=2,则PD的值为 (直接写出结果)4如图,中,(1)如图1,求证:;(2)如图2,请直接用几何语言写出、的位置关系_;(3)证明(2)中的结论5如图,在平

3、面直角坐标系中,已知点,且,为轴上点右侧的动点,以为腰作等腰,使,直线交轴于点(1)求证:;(2)求证:;(3)当点运动时,点在轴上的位置是否发生变化,为什么?6如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2-4a+4+0(1)求a,b的值;(2)以AB为边作RtABC,点C在直线AB的右侧,且ACB45,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与 x轴交于点D,BC与y轴交于点E,连接 DE,过点C作CFBC交x轴于点F求证:CF=BC;直接写出点C到DE的距离7如图,已知中,点是的中点,如果点在线段上以的速度由点向

4、点移动,同时点在线段上由点向点以的速度移动,若、同时出发,当有一个点移动到点时,、都停止运动,设、移动时间为(1)求的取值范围(2)当时,问与是否全等,并说明理由(3)时,若为等腰三角形,求的值8如图,在等边ABC中,ABACBC6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts(1)当t为何值时,M、N两点重合;(2)当点M、N分别在AC、BA边上运动,AMN的形状会不断发生变化当t为何值时,AMN是等边三角形;当t为何值时,AMN是直角三角形;(3)若点M、N都在B

5、C边上运动,当存在以MN为底边的等腰AMN时,求t的值【参考答案】2(1)(2),证明见详解(3)【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可解析:(1)(2),证明见详解(3)【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明;(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,如图(见详解),用同样的方

6、法证明,再根据EDDC,证出为等腰直角三角形,即可求出DEC的度数(1)解:,证明过程如下:由题意可知, D为AB的中点,为等边三角形,(2)解:,理由如下:在射线AB上截取,连接EF,如图所示,为等边三角形,为等边三角形,由题意知,即,在和中,DE与DC之间的数量关系是(3)如图,在射线CB上截取,连接DF,如图所示,为等边三角形,为等边三角形,由题意知,即,在和中,EDDC,为等腰直角三角形,【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键3(1);(2)见解析;APB22.5【分析】(1)利用非负数的性质求解

7、即可;(2)想办法证明PBFF,可得结论;如图2中,过点Q作QFQB交PB于F,过点F作FHx轴解析:(1);(2)见解析;APB22.5【分析】(1)利用非负数的性质求解即可;(2)想办法证明PBFF,可得结论;如图2中,过点Q作QFQB交PB于F,过点F作FHx轴于H,可得等腰直角BQF,证明FQHQBO(AAS),再证明FQFP即可解决问题【详解】解:(1)2a2+4ab+4b2+2a+10,(a+2b)2+(a+1)20,(a+2b)20 ,(a+1)20,a+2b0,a+10,a1,b,A(1,0),B(0,)(2)证明:如图1中,a+b0,ab,OAOB,又AOB90,BAOABO

8、45,D与P关于y轴对称,BDBP,BDPBPD,设BDPBPD,则PBFBAP+BPA45+,PEDB,BEF90,F90EBF,又EBFABDBAOBDP45,F45+,PBFF,PBPF解:如图2中,过点Q作QFQB交PB于F,过点F作FHx轴于H可得等腰直角BQF,BOQBQFFHQ90,BQO+FQH90,FQH+QFH90,BQOQFH,QBQF,FQHQBO(AAS),HQOBOA,HOAQPC,PHOCOBQH,FQFP, 又BFQ45,APB22.5【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题

9、4(1)ABE=90;(2)PD+AC=CE,见解析;(3)1【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:BPE为等边三角形,则CBE=60,故ABE=90;解析:(1)ABE=90;(2)PD+AC=CE,见解析;(3)1【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:BPE为等边三角形,则CBE=60,故ABE=90;(2)如图2,过P作PHAE于H,连BC,作PGBC交BC的延长线于G,构造含30度角的直角PCG、直角CPH以及全等三角形(RtPGBRtPHE),根据含30度的直角三角形的性质和全等三角形的对应边相等证得结论;(3)分三种情况讨

10、论,根据(2)的解题思路得到PD=AC+CE或PD=CE-AC,将数值代入求解即可【详解】(1)解:如图1,点P与点C重合,CD是线段AB的垂直平分线,PA=PB,PAB=PBA=30,BPE=PAB+PBA=60,PB=PE,BPE为等边三角形,CBE=60,ABE=90;(2)如图2,过P作PHAE于H,连BC,作PGBC交BC的延长线于G,CD垂直平分AB,CA=CB,BAC=30,ACD=BCD=60,GCP=HCP=BCE=ACD=BCD=60,GPC=HPC=30,PG=PH,CG=CH=CP,CD=AC,在RtPGB和RtPHE中,RtPGBRtPHE(HL)BG=EH,即CB+

11、CG=CE-CH,CB+CP=CE-CP,即CB+CP=CE,又CB=AC,CP=PD-CD=PD-AC,PD+AC=CE;(3)当P在C点上方时,由(2)得:PD=CE-AC,当AC=6,CE=2时,PD=2-3=-1,不符合题意;当P在线段CD上时,如图3,过P作PHAE于H,连BC,作PGBC交BC于G,此时RtPGBRtPHE(HL),BG=EH,即CB-CG=CE+CH,CB-CP=CE+CP,即CP=CB-CE,又CB=AC,PD=CD-CP=AC-CB+CE,PD=CE-AC当AC=6,CE=2时,PD=2-3=-1,不符合题意;当P在D点下方时,如图4,同理,PD=AC-CE,

12、当AC=6,CE=2时,PD=3-2=1故答案为:1【点睛】本题主要考查了三角形综合题,综合运用全等三角形的判定与性质,含30度角直角三角形的性质,等边三角形的判定与性质等知识点,难度较大,解题时,注意要分类讨论5(1)见解析;(2);(3)见解析【分析】(1)根据垂直的定义可得ADC=E=90,根据余角的性质可得ACD=BAE,然后根据AAS即可证得结论;(2)由于要得出、的位置关系,结解析:(1)见解析;(2);(3)见解析【分析】(1)根据垂直的定义可得ADC=E=90,根据余角的性质可得ACD=BAE,然后根据AAS即可证得结论;(2)由于要得出、的位置关系,结合图形可猜想:;(3)如

13、图,作CPAC于点C,延长FD交CP于点P,先证明BAEFCP,可得3=P,AB=CP,然后证明ACDPCD,可得4=P,进一步即可推出4+2=90,问题得证【详解】解:(1)证明:,ADC=E=90,DAC+ACD=90,DAC+BAE=90,ACD=BAE,在DAC和EBA中,ADC=E,ACD=BAE,AC=AB,(AAS);(2)结合图形可得:;故答案为:;(3)证明:如图,作CPAC于点C,延长FD交CP于点P,AF=CE,AE=CF,1=2,BAE=FCP=90,BAEFCP,3=P,AB=CP,ABC=ACB=45,PCP=90,AB=CP,FCD=45,AC=PC,ACB=PC

14、D,CD=CD,ACDPCD,4=P,3=P,3=4,3+2=90,4+2=90,AGE=90,即【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定和性质,正确添加辅助线、熟练掌握全等三角形的判定和性质是解题的关键6(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论;(2)先根据,得出,再由定理即可得出;解析:(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论;(2)先根据,得出,再由定理即可得出;

15、(3)设,由全等三角形的性质可得出,故为定值,再由,可知的长度不变,故可得出结论【详解】解:(1)证明:,解得,作于点,在与中,;(2)证明:,即,在与中,;(3)点在轴上的位置不发生改变理由:设,由(2)知,为定值,长度不变,点在轴上的位置不发生改变【点睛】本题考查的是全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键7(1)a2,b-1;(2)满足条件的点C(2,1)或(1,-1);(3)证明见解析;1【分析】(1)可得(a2)2+0,由非负数的性质可得出答案;(2)分两种情况:BAC=9解析:(1)a2,b-1;(2)满足条件的点C(2,1)或(1,-1);(3)证明见解析

16、;1【分析】(1)可得(a2)2+0,由非负数的性质可得出答案;(2)分两种情况:BAC=90或ABC=90,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标;(3)如图3,过点C作CLy轴于点L,则CL=1=BO,根据AAS可证明BOECLE,得出BE=CE,根据ASA可证明ABEBCF,得出BE=CF,则结论得证;如图4,过点C作CKED于点K,过点C作CHDF于点H,根据SAS可证明CDECDF,可得BAE=CBF,由角平分线的性质可得CK=CH=1【详解】(1)a24a+4+0,(a2)2+0,(a-2)20,0,a-2=0,2b+2=0,a=2,b=-1;(2)由(1)知a

17、=2,b=-1,A(0,2),B(-1,0),OA=2,OB=1,ABC是直角三角形,且ACB=45,只有BAC=90或ABC=90,、当BAC=90时,如图1,ACB=ABC=45,AB=CB,过点C作CGOA于G,CAG+ACG=90,BAO+CAG=90,BAO=ACG,在AOB和BCP中, ,AOBCGA(AAS),CG=OA=2,AG=OB=1,OG=OA-AG=1,C(2,1),、当ABC=90时,如图2,同的方法得,C(1,-1);即:满足条件的点C(2,1)或(1,-1)(3)如图3,由(2)知点C(1,-1),过点C作CLy轴于点L,则CL=1=BO,在BOE和CLE中,BO

18、ECLE(AAS),BE=CE,ABC=90,BAO+BEA=90,BOE=90,CBF+BEA=90,BAE=CBF,在ABE和BCF中,ABEBCF(ASA),BE=CF,CFBC;点C到DE的距离为1如图4,过点C作CKED于点K,过点C作CHDF于点H,由知BE=CF,BE=BC,CE=CF,ACB=45,BCF=90,ECD=DCF,DC=DC,CDECDF(SAS),BAE=CBF,CK=CH=1【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用

19、辅助线,构造全等三角形解决问题8(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可;(2)根据题意利用全等三角形的判定定理(SAS),进行解析:(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可;(2)根据题意利用全等三角形的判定定理(SAS),进行分析求证即可;(3)根据题意分和以及三种情况,根据等腰三角形的性质进行分析计算.【详解】(1)依题意,.(2)时,与全等,证明:时,在和中,点是的中点,(SAS).(3)当时,有;当

20、时,有,(舍去);当时,有,;综上,当或时,为等腰三角形.【点睛】本题考查等腰三角形相关的动点问题,熟练掌握等腰三角形的性质和全等三角形的判定以及相似三角形的判定与性质并运用数形结合的思维将动点问题转化为代数问题进行分析是解题的关键.9(1)当M、N运动6秒时,点N追上点M;(2),AMN是等边三角形;当或时,AMN是直角三角形;(3)【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的解析:(1)当M、N运动6秒时,点N追上点M;(2),AMN是等边三角形;当或时,AMN是直角三角形;(3)【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的

21、运动路程,N的运动路程比M的运动路程多6cm,列出方程求解即可;(2)根据题意设点M、N运动t秒后,可得到等边三角形AMN,然后表示出AM,AN的长,由于A等于60,所以只要AMAN三角形ANM就是等边三角形;分别就AMN90和ANM90列方程求解可得;(3)首先假设AMN是等腰三角形,可证出ACMABN,可得CMBN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x1+62x,解得:x6,即当M、N运动6秒时,点N追上点M;(2)设点M、N运动t秒后,可得到等边三角形AMN,如图1,AMt,AN62t,ABACBC

22、6cm,A60,当AMAN时,AMN是等边三角形,t62t,解得t2,点M、N运动2秒后,可得到等边三角形AMN当点N在AB上运动时,如图2,若AMN90,BN2t,AMt,AN62t,A60,2AMAN,即2t62t,解得;如图3,若ANM90,由2ANAM得2(62t)t,解得综上所述,当t为或时,AMN是直角三角形;(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知6秒时M、N两点重合,恰好在C处,如图4,假设AMN是等腰三角形,ANAM,AMNANM,AMCANB,ABBCAC,ACB是等边三角形,CB,在ACM和ABN中,AMCANB,CB,ACAB,ACMABN(AAS),CMBN,t6182t,解得t8,符合题意所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形【点睛】本题是三角形综合题,主要考查了等边三角形的判定与性质,含30角的直角三角形的性质,全等三角形的判定与性质,将动点问题转化为线段的长是解题的关键

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服