1、2024年人教版七7年级下册数学期末综合复习题(及答案)一、选择题1如图,直线 a、b 被直线 c 所截,下列说法不正确的是 ( ) A1 和4 是内错角B2 和3 是同旁内角C1 和3 是同位角D3 和4 互为邻补角2下列哪些图形是通过平移可以得到的()ABCD3在平面直角坐标系中,点向下平移4个单位后的坐标是,则点在( )A第一象限B第二象限C第三象限D第四象限4下列语句中,是假命题的是()A有理数和无理数统称实数B在同一平面内,过一点有且只有一条直线与已知直线垂直C在同一平面内,垂直于同一条直线的两条直线互相平行D两个锐角的和是锐角5把一块直尺与一块含的直角三角板如图放置,若,则的度数为
2、( )ABCD1246下列叙述中,1的立方根为1;4的平方根为2;8立方根是2;的算术平方根为正确的是( )ABCD7如图,AB/CD,ADAC,ACD53,则BAD的度数为()A53B47C43D378如图,在平面直角坐标系上有个点P(1,0),点P第1次向上平移1个单位至点P1(1,1),紧接着第2次向左平移2个单位至点P2(1,1),第3次向上平移1个单位到达P3(1,2),第4次向右平移3个单位到达P4(2,2),第5次又向上平移1个单位,第6次向左平移4个单位,依此规律平移下去,点P2021的坐标为()A(506,1011)B(506,506)C(506,1011)D(506,506
3、)九、填空题9如果,的平方根是,则_十、填空题10已知点与点关于轴对称,那么_.十一、填空题11如图,ADBC,BD为ABC的角平分线,DE、DF分别是ADB和ADC的角平分线,且BDF,则A与C的等量关系是_(等式中含有)十二、填空题12已知,且,请直接写出、的数量关系_十三、填空题13如图,在长方形纸片ABCD中,点E、F分别在AD、BC上,将长方形纸片沿直线EF折叠后,点D、C分别落在点D1、C1的位置,如果=40,那么EFB的度数是_度十四、填空题14已知实数a、b互为相反数,c、d互为倒数,e是的整数部分,f是的小数部分,求代数式ef_十五、填空题15若点P(2x,x-3)到两坐标轴
4、的距离之和为5,则x的值为_.十六、填空题16在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点已知点的终结点为点的终结点为,点的终结点为,这样依次得到,若点的坐标为,则点的坐标为_十七、解答题17(1)计算:(2)计算:(3)已知,求的值.十八、解答题18求下列各式中的x:(1)x2=0(2)(x1)3=64十九、解答题19请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,12,AD求证:BC证明:12,(已知)又:13,( )2_(等量代换)(同位角相等,两直线平行)ABFD( )AD(已知)D_(等量代换)_CD( )BC( )二十、解答题20如图,在平
5、面直角坐标系中,A(1,2),B(2,4),C(4,1)ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+2,y0+4),将ABC作同样的平移得到A1B1C1(1)请画出A1B1C1并写出点A1,B1,C1的坐标;(2)求A1B1C1的面积;二十一、解答题21对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:3,3(1)仿照以上方法计算: ; (2)若1,写出满足题意的x的整数值 (3)如果我们对a连续求根整数,直到结果为1为止例如:对10连续求根整数2次31,这时候结果为1对145连续求根整数, 次之后结果为1二十二、解答题22如图,用两个面积为的小正方形拼成
6、一个大的正方形(1)则大正方形的边长是_;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为?二十三、解答题23已知,ABDE,点C在AB上方,连接BC、CD(1)如图1,求证:BCDCDEABC;(2)如图2,过点C作CFBC交ED的延长线于点F,探究ABC和F之间的数量关系;(3)如图3,在(2)的条件下,CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分ABC,求BGDCGF的值二十四、解答题24综合与探究综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,且,三角形是直角三角形,操作发现
7、:(1)如图1,求的度数;(2)如图2创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由二十五、解答题25在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图1,点在线段上运动时,平分.若,则_;若,则_;试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由.【参考答案】一、选择题1A解析:A【分析】同位角:两个都在截线的同旁,又分别处在被
8、截的两条直线同侧的位置的角叫做同位角;内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【详解】解:A、和不是内错角,此选项符合题意; B、和是同旁内角,此选项不符合题意;C、和是同位角,此选项不符合题意; D、和是邻补角,此选项不符合题意;故选A【点睛】本题主要考查了同位角,同旁内角,内错角,邻补角,理解同位角,内错角和同旁内角和邻补角的定义是关键2B【分析】根据平移、旋转、轴对称的定义逐项判断即可【详解】A、通过旋转得到,故本选项错误B、通过平移得到,故本选项
9、正确C、通过轴对称得到,故本选项错误D、通过旋转得到,故本选项错误解析:B【分析】根据平移、旋转、轴对称的定义逐项判断即可【详解】A、通过旋转得到,故本选项错误B、通过平移得到,故本选项正确C、通过轴对称得到,故本选项错误D、通过旋转得到,故本选项错误故选:B【点睛】本题考查了平移、旋转、轴对称的定义,熟记定义是解题关键3B【分析】根据向下平移,纵坐标减,求出点的坐标,再根据各象限内点的特征解答【详解】解:设点P纵坐标为y,点向下平移4个单位后的坐标是,点的坐标为,点在第二象限故选:B【点睛】本题考查了坐标与图形的变化平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减求
10、出点的坐标是解题的关键4D【分析】根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐项分析即可【详解】A. 有理数和无理数统称实数,正确,是真命题,不符合题意;B. 在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意;C. 在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;D. 两个锐角的和不一定是锐角,例如,故D选项是假命题,符合题意故选D【点睛】本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键5D【分析】根据角的和差可先计算出AEF,再根据两直线平行同旁内角互补即可得出2的度
11、数【详解】解:由题意可知AD/BC,FEG=90,1=34,FEG=90,AEF=90-1=56,AD/BC,2=180-AEF=124,故选:D【点睛】本题考查平行线的性质熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键6D【分析】分别求出每个数的立方根、平方根和算术平方根,再判断即可【详解】1的立方根为1,错误;4的平方根为2,正确;8的立方根是2,正确;的算术平方根是,正确;正确的是,故选:D【点睛】本题考查了平方根、算术平方根和立方根解题的关键是掌握平方根、算术平方根和立方根的定义7D【分析】因为ADAC,所以CAD90由AB/CD,得BAC180ACD,进而求得BAD的度数【详
12、解】解:AB/CD,ACD+BAC180CAB180ACD18053127又ADAC,CAD90BADCABCAD1279037故选:D【点睛】本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键8A【分析】通过观察前面几次点的坐标,找到规律,即可求解【详解】解:设第n次平移至点Pn,观察发现:P(1,0),P1(1,1),P2(1,1),P3(1,2),P4(2,2),P5(解析:A【分析】通过观察前面几次点的坐标,找到规律,即可求解【详解】解:设第n次平移至点Pn,观察发现:P(1,0),P1(1,1),P2(1,1),P3(1,2),P4(2,2),P5(2,3),P6(2,
13、3),P7(2,4),P8(3,4),P9(3,5),P4n(n+1,2n),P4n+1(n+1,2n+1),P4n+2(n1,2n+1),P4n+3(n1,2n+2)(n为自然数)20215054+1,P2021(505+1,5052+1),即(506,1011)故选:A【点睛】此题主要考查了探索坐标系中点的规律,理解题意找到点的运动规律是解题的关键九、填空题9-4【分析】根据题意先求出 ,再代入,即可【详解】解:的平方根是, , ,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值解析:-4【分析】根据题意先求出 ,再代入,即可【详解】解:的平方根是, ,
14、 ,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值十、填空题100;【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可【详解】解:根据对称的性质,得,解得故答案为:0【点睛】考查了关于轴、轴对称的点的坐标,解析:0;【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可【详解】解:根据对称的性质,得,解得故答案为:0【点睛】考查了关于轴、轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆十一、填空题11AC+2【分析】由角平分线定义得出ABC2CBD,ADC2ADF
15、,又因ADBC得出A+ABC180,ADC+C180,CBDADB,等量代换得A解析:AC+2【分析】由角平分线定义得出ABC2CBD,ADC2ADF,又因ADBC得出A+ABC180,ADC+C180,CBDADB,等量代换得AC+2即可得到答案【详解】解:如图所示: BD为ABC的角平分线,ABC2CBD,又ADBC,A+ABC180,A+2CBD180,又DF是ADC的角平分线,ADC2ADF,又ADFADB+ADC2ADB+2,又ADC+C180,2ADB+2+C180,A+2CBD2ADB+2+C又CBDADB,AC+2,故答案为:AC+2【点睛】本题考查了平行线的性质,解题需要熟练
16、掌握角平分线的定义,平行线的性质和等式的性质,重点掌握平行线的性质十二、填空题12(上式变式都正确)【分析】过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案【详解】解:如图解析:(上式变式都正确)【分析】过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案【详解】解:如图所示,过点E作,过点F作,且,故答案为:【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键十三
17、、填空题1370【分析】先利用折叠的性质得出DEFD1EF,再由利用平角的应用求出DEF,最后长方形的性质即可得出结论【详解】解:如图,由折叠可得DEFD1EF,AED140解析:70【分析】先利用折叠的性质得出DEFD1EF,再由利用平角的应用求出DEF,最后长方形的性质即可得出结论【详解】解:如图,由折叠可得DEFD1EF,AED140,DEF70,四边形ABCD是长方形,ADBC,EFBDEF70故答案为:70【点睛】考查了长方形的性质,折叠的性质,关键是利用折叠的性质得出DEFD1EF解答十四、填空题14【分析】根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可【详解】
18、解:实数a、b互为相反数,a+b0,c、d互为倒数,cd1,34,的整数部分解析:【分析】根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可【详解】解:实数a、b互为相反数,a+b0,c、d互为倒数,cd1,34,的整数部分为3,e3,23,的小数部分为2,即f2,-ef=4-故答案为:4-【点睛】本题考查相反数、倒数、无理数的估算,掌握相反数、倒数的意义,以及无理数的整数部分、小数部分的表示方法是解决问题的关键十五、填空题15或【详解】【分析】分x0,0x3,x3三种情况分别讨论即可得.【详解】当x0时,2x0,x-30,由题意则有-2x-(x-3)=5,解得:x=,当0x3
19、时,2x0,x-3解析:或【详解】【分析】分x0,0x3,x3三种情况分别讨论即可得.【详解】当x0时,2x0,x-30,由题意则有-2x-(x-3)=5,解得:x=,当0x3时,2x0,x-30,x-30,由题意则有2x+x-3=5,解得:x=3(不合题意,舍去),综上,x的值为2或,故答案为2或.【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键.十六、填空题16【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(3,3),点P4的坐标为(2,1),点P5的坐标为(2,0),从而得到每4次变换一个循环,然后解析:【分析】利用
20、点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(3,3),点P4的坐标为(2,1),点P5的坐标为(2,0),从而得到每4次变换一个循环,然后利用202145051可判断点P2021的坐标与点P1的坐标相同【详解】解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(3,3),点P4的坐标为(2,-1),点P5的坐标为(2,0),而20214505+1,所以点P2021的坐标与点P1的坐标相同,为(2,0),故答案为:【点睛】本题考查了坐标的变化规律探索,找出前5个点的坐标,找出变化规律,是解题的关键十七、解答题17(1)2;(2)6
21、;(3) 或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;解析:(1)2;(2)6;(3) 或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;(3)直接利用平方根的定义计算得出答案【详解】解:(1),;(2),;(3)解得:或故答案为:(1)2;(2)6;(3) 或【点睛】本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键十八、解答题18(1);(2)【分析】
22、(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1),;(2),.【点睛】本题主要考查解析:(1);(2)【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1),;(2),.【点睛】本题主要考查了平方根和立方根,解题的关键在于能够熟练掌握平方根和立方根的求解方法.十九、解答题19对顶角相等;3;两直线平行,同位角相等;BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可【详解】证明:12,(解析:对顶角相等;3;两直线平行,同位
23、角相等;BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可【详解】证明:12,(已知)又:13,(对顶角相等)23(等量代换)(同位角相等,两直线平行)ABFD(两直线平行,同位角相等)AD(已知)DBFD(等量代换)ABCD(内错角相等,两直线平行)BC(两直线平行,内错角相等)【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键二十、解答题20(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)【分析】(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标(2)利用分割法求解即
24、可【详解】解:(1解析:(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)【分析】(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标(2)利用分割法求解即可【详解】解:(1)如图,A1B1C1并写即为所求作,A1(1,2),B1(0,0),C1(-2,3)(2)A1B1C1的面积=33-32-12-13=【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题二十一、解答题21(1)4;4;(2)1,2,3;(3)3【解析】【分析】根据题中的新定义计算即可求出值【详解】解:(1)仿照以上方法计算:16=4;24=4;
25、(2)若x1,写出满足题意的解析:(1)4;4;(2)1,2,3;(3)3【解析】【分析】根据题中的新定义计算即可求出值【详解】解:(1)仿照以上方法计算:;(2)若1,写出满足题意的x的整数值1,2,3;(3)对145连续求根整数,第1次之后结果为12,第2次之后结果为3,第3次之后结果为1故答案为:(1)4;4;(2)1,2,3;(3)3【点睛】考查了估算无理数的大小,以及实数的运算,弄清题中的新定义是解本题的关键二十二、解答题22(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2
26、)设长方形纸片的长为,宽为,根据解析:(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据面积列得,求出,得到,由此判断不能裁出符合条件的大正方形.【详解】(1)用两个面积为的小正方形拼成一个大的正方形,大正方形的面积为400,大正方形的边长为故答案为:20cm;(2)设长方形纸片的长为,宽为,解得:,答:不能剪出长宽之比为5:4,且面积为的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.二十三、解答题23
27、(1)证明见解析;(2);(3)【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2);(3)【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质得出,从而可得,再根据垂直的定义可得,由此即可得出结论;(3)过点作,延长至点,先根据平行线的性质可得,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案【详解
28、】证明:(1)如图,过点作,即,;(2)如图,过点作,即,;(3)如图,过点作,延长至点,平分,平分,由(2)可知,又,【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键二十四、解答题24(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2ABD180,1解析:(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2ABD180,1DBC,则ABDABCDBC6
29、01,进而得出结论;(3)过点C 作CPa,由角平分线定义得CAMBAC30,BAM2BAC60,由平行线的性质得1BAM60,PCACAM30,2BCP60,即可得出结论【详解】解:(1)如图1 ,;图1 (2)理由如下:如图2 过点作,图2 ,;(3),图3 理由如下:如图3,过点作,平分,又,又 ,【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键二十五、解答题25(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得
30、CAG=BAC=50;再由平行线的性质可得EDG=C=30,FMD=解析:(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=C=30,FMD=GAC=50;由三角形的内角和定理求得AFD的度数即可;已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;即可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;再由三角形的内角和定理可求得AFD=110;AFD=90+B,已知
31、AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;由此可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;再由三角形的内角和定理可得AFD=90+B;(2)AFD=90-B,已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,NDE=EDB,即可得FDM=NDE=EDB;由DE/AC,根据平行线的性质可得EDB=C,FMD=GAC;即可得到FDM=NDE=C,所以FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B
32、;再由三角形外角的性质可得AFD=FDM +FMD=90-B.【详解】(1)AG平分BAC,BAC=100,CAG=BAC=50;,C=30,EDG=C=30,FMD=GAC=50;DF平分EDB,FDM=EDG=15;AFD=180-FMD-FDM=180-50-15=115;B=40,BAC+C=180-B=140;AG平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;AFD=180-(FDM +FMD)=180-70=110;故答案为115,110;AFD=90
33、+B,理由如下:AG平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;AFD=180-(FDM +FMD)=180-(90-B)=90+B;(2)AFD=90-B,理由如下:如图,射线ED交AG于点M,AG平分BAC,DF平分EDB,CAG=BAC,NDE=EDB,FDM=NDE=EDB,DE/AC,EDB=C,FMD=GAC;FDM=NDE=C,FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;AFD=FDM +FMD=90-B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100