1、人教版八年级数学上册期末质量检测试卷带答案一、选择题12020年11月,腾讯推出新的微信表情,下列表情图标是轴对称图形的是()ABCD2斑叶兰的种子小得简直像灰尘一样,1亿粒斑叶兰种子才50克重,因种子太小,只有放在显微镜下才能看清它的真面目,它的一粒种子重约0.0000005克,数据0.0000005用科学记数法表示为()ABCD3若,则的值为()A8B12C16D244若代数式在实数范围内有意义,则的取值范围为()ABCD5下列从左到右的变形,属于因式分解的是()Am2+5m+4m(m+5)+4Bm24m+4(m2)2Ca(mn)amanD15m2n3m5mn6下列各式中,正确的是()AB
2、CD7如图,已知BACABD90,AD和BC相交于O在ACBD;BC=AD ;CD;OAOB条件中任选一个,可使ABCBAD可选的条件个数为()A1B2C3D48若关于x的分式方程的根是正数,则实数m的取值范围是()A,且B且,C,且D且,9如图,将图1中的菱形纸片沿对角线剪成4个直角三角形,拼成如图2的四边形(相邻纸片之间不重叠,无缝隙)若四边形的面积为13,中间空白处的四边形的面积为1,直角三角形的两条直角边分别为和,则()A12B13C24D2510已知的周长相等,现有两个判断:若,则;若,则,对于上述的两个判断,下列说法正确的是()A,都正确B,都错误C错误,正确D正确,错误二、填空题
3、11若分式的值为0,则x的值为_12点P(-2,4)关于x轴对称的点的坐标为_13已知,则实数A+B_14若2ma,32nb,m,n为正整数,则23m+10n_15如图,在中,的平分线与的垂直平分线相交于点O,沿折叠,点C与点O恰好重合则_16要使x2+kx+4是完全平方式,那么k的值是_17已知x、y均为实数,且,则_18如图,ABC中,ABAC=10cm,BC8cm,点E为AB的中点如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动当点Q的运动速度为_cm/s时,能够使BPE与CQP全等三、解答题19因式分解:(1)x3yxy3;(2)(x2)(
4、x4)x2420(1)计算:2(xy)2(2xy)(y2x);(2)解方程:21如图:,和相交于点,求证:22如图,直线l线段BC,点A是直线l上一动点在ABC中,AD是ABC的高线,AE是BAC的角平分线(1)如图1,若ABC65,BAC80,求DAE的度数;(2)当点A在直线l上运动时,探究BAD,DAE,BAE之间的数量关系,并画出对应图形进行说明23商家销售甲款式帽子的单价比乙款式帽子的单价多2元,用80元购买甲款式帽子的数量与用64元购买乙款式帽子的数量相同(1)甲、乙两种款式帽子的单价各是多少元?(2)公司准备从商家购买甲、乙两种款式的帽子共100顶,要求甲款式帽子的数量不能少于乙
5、款式帽子,且不能多于乙款式帽子的公司有几种购买方案;购买时商家将甲款式帽子的单价降低m元(),乙款式帽子的单价不变,若公司购买的总费用不超过821元,求m的取值范围24把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法如:用配方法分解因式:a2+6a+8,解:原式=a2+6a+8+1-1=a2+6a+9-1=(a+3)212=M=a2-2a1,利用配方法求M的最小值解:(a-b)20,当a=1时,M有最小值2请根据上述材料解决下列问题:(1)用配方法因式分解:(2)若,求M的最小值(3)已知x2+2y2+z2-2xy-2y-4z+5=0,求x+y+z的值2
6、5如图,在等边中,分别为,边上的点,(1)如图1,若点在边上,求证:;(2)如图2,连若,求证:;(3)如图3,是的中点,点在内,点,分别在,上,若,直接写出的度数(用含有的式子表示)26如图1,在ABC中,AEBC于E,AEBE,D是AE上一点,且DECE,连接BD,CD(1)判断与的位置关系和数量关系,并证明;(2)如图2,若将DCE绕点E旋转一定的角度后,BD与AC的位置关系和数量关系是否发生变化?并证明;(3)如图3,将(2)中的等腰直角三角形都换成等边三角形,其他条件不变,求BD与AC夹角的度数【参考答案】一、选择题2D解析:D【分析】结合轴对称图形的概念求解即可【详解】解:A、不是
7、轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不符合题意;D、是轴对称图形,故此选项符合题意故选:D【点睛】本题考查了轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴轴对称图形的关键是寻找对称轴,图形的两部分折叠后可以完全重合3D解析:D【分析】根据绝对值小于1的数可以用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,即可求解【详解】解:0.0000005=故选:D【点睛】本题考
8、查用科学记数法表示较小的数,熟练掌握一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定是解题的关键4C解析:C【分析】利用同底数幂的乘法公式和幂的乘方公式的逆运用,将3m+2n进行变形后,代入条件求值【详解】解:,3m+2n=3m32n=3m(3n)2=422=16故选:C【点睛】本题考查同底数幂的乘法公式和幂的乘方公式的逆运用,熟记公式am+n=aman和amn=(am)n并熟练运用是解题的关键5A解析:A【分析】根据二次根式的被开方数0和分式的分母0两个条件确定x的范围即可【详解】由二次根式的被开方数0,得3x0,x0由分式的分母0,得x-20,x2,x0 且x2故选
9、A【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,二次根式的被开方数0时二次根式有意义,分式的分母0时分式有意义掌握以上知识是解题的关键6B解析:B【分析】依据因式分解是指把一个多项式化成几个整式的积的形式来求解【详解】解:A:等号的右边不是积的形式,故A不是因式分解,不符合题意;B:符合因式分解的概念,故B符合题意;C:等号的右边不是积的形式,故C不是因式分解,不符合题意;D:等号的左边不是多项式,故D不是因式分解,不符合题意;故选:B【点睛】本题考查了因式分解的概念,掌握概念是解题的关键7D解析:D【分析】根据分式的性质,即可一一判定【详解】解:A,故该选项错误;B当时,当,此式
10、无意义,故该选项错误;C ,故该选项错误;D ,故该选项正确;故选:D【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数或(整式),分式的值不变,熟练掌握和运用分式的性质是解决本题的关键8D解析:D【分析】根据全等三角形的判定定理逐个判断即可【详解】解:ACBD,CABDBA,ABBA,符合全等三角形的判定定理SAS,能推出ABCBAD;CABDBA,ADBC,ABBA,符合直角三角形全等的判定定理HL,能推出RtABCRtBAD;CD,CABDBA,ABBA,符合全等三角形的判定定理AAS,能推出ABCBAD;OBOA,OABOBA,即OABOBA,ABBA,C
11、ABDBA,符合全等三角形的判定定理ASA,能推出ABCBAD;即能选的个数是4个,故选:D【点睛】本题考查了等腰三角形的性质和全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL9D解析:D【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可【详解】解:方程两边同乘2(x2)得:m=2(x-1)4(x-2),解得:x= 2,m2,由题意得:0,解得:m6,实数m的取值范围是:m6且m2故选:D【点睛】此题考查了分式方程的解、一元一次不等式的解法,解题的关键是掌握解分式方程的一
12、般步骤、分式方程无解的判断方法10D解析:D【分析】根据菱形的性质可得对角线互相垂直平分,进而可得4个直角三角形全等,结合已知条件和勾股定理求得,进而根据面积差以及三角形面积公式求得,最后根据完全平方公式即可求得【详解】菱形的对角线互相垂直平分,个直角三角形全等;,四边形是正方形,又正方形的面积为13,正方形的边长为,根据勾股定理,则,中间空白处的四边形的面积为1,个直角三角形的面积为,故选D【点睛】本题考查了正方形的性质与判定,菱形的性质,勾股定理,完全平方公式,求得是解题的关键11A解析:A【分析】根据即可推出,判断正确;根据相似三角形的性质和判定和全等三角形的判定推出即可【详解】解:,的
13、周长相等,正确;如图,延长到,使,延长到,使,的周长相等,在和中, (SAS),又,在和中,(AAS),正确;综上所述:,都正确故选:A【点睛】本题考查了全等三角形的判定、等腰三角形的性质,能构造全等三角形、综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有,而和不能判断两三角形全等二、填空题121【分析】根据分式的值为零的条件是:分子为零而分母不为零,然后进行计算即可【详解】解:分式的值为零,且,故答案为:【点睛】本题考查了分式的值为零的条件,属于基础知识的考查,比较简单13【分析】根据关于轴对称的点的横坐标不变,纵坐标互为相反数即可求解【详解】解:点P(-2,4)关于x轴对称
14、的点的坐标为,故答案为:【点睛】本题考查了求关于轴对称的点的坐标,掌握关于坐标轴对称的点的坐标特征是解题的关键14A解析:5【分析】已知等式右边通分并利用同分母分式的加法法则计算,再根据分式相等的条件即可求出所求【详解】解:等式整理得:,5x+1A(x+2)+B(x-1)5x+1(A+B)x+2A-B,即A+B5故答案为:5【点睛】本题考查了分式的加减解题的关键是通分15【分析】综合幂的运算相关法则求解【详解】解:,则故答案为:【点睛】本题考查幂的相关运算,灵活根据运算法则对条件进行变形处理是解题关键16#52度【分析】连接OC,根据角平分线的定义求出BAO,根据等腰三角形两底角相等求出ABC
15、,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得ABO=B解析:#52度【分析】连接OC,根据角平分线的定义求出BAO,根据等腰三角形两底角相等求出ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得ABO=BAO,再求出OBC,然后证AOBAOC(SAS),得出OB=OC,OCB=OBC,再根据等边对等角求出OCB=OBC,根据折叠的性质可得OE=CE,然后根据等边对等角求出COE,再利用三角形的内角和定理列式计算即可得OEC,即可求解【详解】解:如图,连接OC,BAC=52,AO为BAC的平分线,BAO=BAC=52
16、=26,又AB=AC,ABC=(180-BAC)=(180-52)=64,点O在AB的垂直平分线,OA=OB,ABO=BAO=26,OBC=ABC-ABO=64-26=38,AO为BAC的平分线,BAO=CAO,AB=AC,AO=AO,AOBAOC(SAS),OB=OC,OCB=OBC=38,将C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,OE=CE,OEF=CEF,COE=OCB=38,在OCE中,OEC=180-COE-OCB=180-38-38=104,OEF=OEC=52,故答案为:52【点睛】本题考查了翻折变换的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等
17、腰三角形三线合一的性质,等边对等角的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键17【分析】根据首末两项是x和2的平方,那么中间项为加上或减去x和2的乘积的2倍也就是kx,由此对应求得k的数值即可【详解】解:x2+kx+4是一个多项式的完全平方,kx=22x解析:【分析】根据首末两项是x和2的平方,那么中间项为加上或减去x和2的乘积的2倍也就是kx,由此对应求得k的数值即可【详解】解:x2+kx+4是一个多项式的完全平方,kx=22x,k=4故答案为:4【点睛】此题考查完全平方公式问题,关键要根据完全平方公式的结构特征进行分析,两数和的平方加上或减去它们乘积的2倍,就构成
18、完全平方式,在任意给出其中两项的时候,未知的第三项均可求出,要注意积的2倍符号,有正负两种情形,不可漏解187【分析】根据可得出,再展开,将代入,即可求出的值【详解】解:,将代入上式,得:故答案为:7【点睛】本题考查完全平方公式和代数式求值利用整体代入的思解析:7【分析】根据可得出,再展开,将代入,即可求出的值【详解】解:,将代入上式,得:故答案为:7【点睛】本题考查完全平方公式和代数式求值利用整体代入的思想是解题的关键1975或3【分析】根据等腰三角形的性质得出BC,根据全等三角形的判定得出两种情况:BECP,BPCQ,BECQ,BPPC,设运动时间为t秒,列出方程,再求出答案即可【详解】解
19、析:75或3【分析】根据等腰三角形的性质得出BC,根据全等三角形的判定得出两种情况:BECP,BPCQ,BECQ,BPPC,设运动时间为t秒,列出方程,再求出答案即可【详解】解:设运动时间为t秒,AB10厘米,点E为AB的中点,BEAB5(cm),ABAC,BC,要使,BPE能够与CQP全等,有两种情况:BECP,BPCQ,83t5,解得:t1,CQBP313,点Q的运动速度为313(厘米/秒);BECQ,BPPC,BC8厘米,BPCPBC5(厘米),即3t4,解得:t,CQBE5厘米,点Q的运动速度为53.75(厘米/秒),故答案为:3或3.75【点睛】本题考查了全等三角形的判定和等腰三角形
20、的性质,能求出符合的所有情况是解此题的关键,用了分类讨论思想三、解答题20(1)xy(x+y)(xy)(2)2(x+2)(x+1)【分析】(1)先提公因式,再根据平方差公式因式分解即可求解;(2)先根据平方公式因式分解,然后提公因式,即可求解(1)解析:(1)xy(x+y)(xy)(2)2(x+2)(x+1)【分析】(1)先提公因式,再根据平方差公式因式分解即可求解;(2)先根据平方公式因式分解,然后提公因式,即可求解(1)解:原式;(2)解:原式【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键21(1)(2)原分式方程无解【分析】(1)第一项利用完全平方差公式展开,第二项利用平方差
21、公式展开,再去括号合并同类项(2)等式左右两边同时乘公分母,然后去括号,移项,合并同类项,系数化为解析:(1)(2)原分式方程无解【分析】(1)第一项利用完全平方差公式展开,第二项利用平方差公式展开,再去括号合并同类项(2)等式左右两边同时乘公分母,然后去括号,移项,合并同类项,系数化为1【详解】解:(1)原式 (2)乘公分母,得:,去括号,得,移项,得,合并同类项,得,系数化为1,得检验:当时,所以,原分式方程无解【点睛】(1)本题考查乘法公式的运用,熟悉掌握完全平方式、平方差公式是本题的解题关键;(2)本题考查解分式方程,熟悉掌握解分式方程的步骤是本题的解题关键22见解析【分析】由全等三角
22、形的判定证明,即可得出【详解】证明:,(对顶角相等),【点睛】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答的关键解析:见解析【分析】由全等三角形的判定证明,即可得出【详解】证明:,(对顶角相等),【点睛】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答的关键23(1)15(2)见解析【分析】(1)根据角平分线的定义得BAEBAC40而BAD90ABD25,利用角的和差关系可得答案;(2)根据高在形内和形外进行分类,再解析:(1)15(2)见解析【分析】(1)根据角平分线的定义得BAEBAC40而BAD90ABD25,利用角的和差关系可得答案;(2)根据高
23、在形内和形外进行分类,再根据AB,AC,AD的位置进行讨论(1)解:AE是BAC的角平分线,BAEBAC40,AD是ABC的高线,BDA90,BAD90ABD25,DAEBAEBAD402515(2)当点D落在线段CB的延长线时,如图所示:此时BADBAEDAE;当点D在线段BC上,且在E点的左侧时,如图所示:此时BADDAEBAE;当点D在线段BC上,且在E点的右侧时,如图所示:此时BAEDAEBAD;当点D在BC的延长线上时,如图所示:BAEDAEBAD【点睛】本题主要考查了角平分线的定义,三角形内角和定理等知识,运用分类讨论思想是解题的关键24(1)甲种款式帽子的单价是10元,乙种款式帽
24、子的单价是8元;(2)公司有9种购买方案;m的取值范围是【分析】(1)可设甲种款式帽子的单价是x元,则乙种款式帽子的单价是(x-2)元,根据等解析:(1)甲种款式帽子的单价是10元,乙种款式帽子的单价是8元;(2)公司有9种购买方案;m的取值范围是【分析】(1)可设甲种款式帽子的单价是x元,则乙种款式帽子的单价是(x-2)元,根据等量关系:用80元购买甲款式帽子的数量与用64元购买乙款式帽子的数量相同,列出方程求解即可;(2)设公司准备从商家购买甲种款式的帽子y顶,则从商家购买甲种款式的帽子(100-y)顶,根据不等关系:甲款式帽子的数量不能少于乙款式帽子,且不能多于乙款式帽子的,列出不等式组
25、求解即可;根据公司购买的总费用不超过821元,列出不等式可求m的取值范围(1)解:设甲种款式帽子的单价是x元,则乙种款式帽子的单价是(x-2)元,依题意得:解得:x=10,经检验,x=10是原方程的解,且符合题意,则x-2=10-2=8答:甲种款式帽子的单价是10元,乙种款式帽子的单价是8元;(2)设公司准备从商家购买甲种款式的帽子y顶,则从商家购买甲种款式的帽子(100-y)顶,依题意得:解得:y为整数,公司有9种购买方案;依题意有:(10-m)y+8(100-y)821,(2-m)y21,y最小为34,m3,答:m的取值范围是【点睛】本题考查了分式方程的应用,一元一次不等式的应用,根据题意
26、列出方程和不等式是解题的关键25(1);(2);(3)4【分析】(1)根据配方法,配凑出一个完全平方公式,再利用公式法进行因式分解即可;(2)先利用配方法,配凑出一个完全平方公式,再根据偶次方的非负性求解即可;(3)解析:(1);(2);(3)4【分析】(1)根据配方法,配凑出一个完全平方公式,再利用公式法进行因式分解即可;(2)先利用配方法,配凑出一个完全平方公式,再根据偶次方的非负性求解即可;(3)先利用配方法进行因式分解,再利用偶次方的非负性求出x、y、z的值,然后代入求解即可【详解】(1)原式;(2)当时,有最小值;(3)解得则【点睛】本题考查了利用配方法进行因式分解、偶次方的非负性等
27、知识点,读懂题意,掌握配方法是解题关键26(1)见解析(2)见解析(3)【分析】(1)连接DF,根据“有一个角是60的等腰三角形是等边三角形”可判断DEF是等边三角形,则DF=EF,又ABC是等边三角形,根据三角形内角和可解析:(1)见解析(2)见解析(3)【分析】(1)连接DF,根据“有一个角是60的等腰三角形是等边三角形”可判断DEF是等边三角形,则DF=EF,又ABC是等边三角形,根据三角形内角和可得出,AFD=FEC,所以ADFCFE(AAS),则AD=CF;(2)过点F作JKAC交AB于点J,交BC于点K,过点F作PIAB交AC于P,交BC于点I,连接DF,则BJK和CPI是等边三角
28、形,BDEJFDKEF,所以DJ=BE=FK,因为ABPI,FKAC,所以四边形AJFP是平行四边形,则AJ=PF,易得CPI为等边三角形,由FCB=30可得CF平分PCI,则FI=FP,所以FP=AJ,FK=BE=DJ,FI=FK,所以AJ=DJ=BE,即AD=AJ+DJ=2BE;(3)延长MO到点G,使OG=OM,连接NG,BG,NM,作ACQ=ABN,且使CQ=BN,连接MQ,AQ,先得到BOGCOM(SAS),再得到ACQABN(SAS)和BNGCQM(SAS),所以NAM=MAQ=CAM+CAQ=CAM+BAN,所以CAM+BAN=30,则CAM=,所以BAN=30-(1)证明:如图
29、,连接,是等边三角形,是等边三角形,;(2)证明:如图,过点作交于点,交于点,过点作交于,交于点,连接,和是等边三角形,是等边三角形,由(1)中结论可知,四边形是平行四边形,为等边三角形,平分,是等边三角形,即;(3)如图,延长到点,使,连接,作,且使,连接,是等边三角形,又,【点睛】本题属于三角形的综合题,涉及全等三角形的性质与判定,等边三角形的性质与判定,等腰三角形三线合一等知识,类比思想及构造的思想进行分析,仿造(1)中的结论构造出全等三角形是解题关键27(1), ;(2), ;(3)【分析】(1)先判断出,再判定,再判断,(2)先判断出,再得到同理(1)可得结论;(3)先判断出,再判断出,最后计算即可【详解】解:(1)与的位置关解析:(1), ;(2), ;(3)【分析】(1)先判断出,再判定,再判断,(2)先判断出,再得到同理(1)可得结论;(3)先判断出,再判断出,最后计算即可【详解】解:(1)与的位置关系是:,数量关系是理由如下:如图1,延长交于点于,AEBC,(2)与的位置关系是:,数量关系是如图,线段AC与线段BD交于点F,线段AE与线段BD交于点G,即,AEBC,又,(3)如图,线段AC与线段BD交于点F,和是等边三角形,在和中,与的夹角度数为【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,等边三角形的性质,判断垂直的方法,解本题的关键是判断
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100