1、2023年人教版中学七7年级下册数学期末质量监测题含解析一、选择题1如图所示,下列说法正确的是( )A与是内错角B与是同位角C与是同旁内角D与是内错角2下列对象中不属于平移的是( )A在平坦雪地上滑行的滑雪运动员B上上下下地迎送来客的电梯C一棵倒映在湖中的树D在笔直的铁轨上飞驰而过的火车3在平面直角坐标系中,下列各点在第二象限的是( )ABCD4下列说法中,错误的个数为( )两条不相交的直线叫做平行线;过一点有且只有一条直线与已知直线平行;在同一平面内不平行的两条线段一定相交;两条直线与第三条直线相交,那么这两条直线也相交A1个B2个C3个D4个5如图,已知直线AB,CD被直线AC所截,ABC
2、D,E是平面内CD上方的一点(点E不在直线AB,CD,AC上),设BAE,DCE下列各式:,180,360中,AEC的度数可能是( )ABCD6下列说法错误的是( )A-8的立方根是-2BC的相反数是D3的平方根是7如图,直线ABCD,BE平分ABD,若DBE20,DEB80,求CDE的度数是()A50B60C70D808如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第21秒时,点P的坐标为()A(21,1)B(21,0)C(21,1)D(22,0)九、填空题9若,则=_十、填空题10已知
3、点与点关于轴对称,则的值为_十一、填空题11如图,在中,是的角平分线,垂足为,则_ 十二、填空题12如图,直角三角板直角顶点在直线上已知,则的度数为_十三、填空题13如图, 把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M 、N的位置上,若EFG=54,则EGB=_十四、填空题14请阅读下列材料,现在规定一种新的运算:,例如:按照这种计算的规定,当,x的值为_十五、填空题15已知点的坐标(3-a,3a-1),且点到两坐标轴的距离相等,则点的坐标是_十六、填空题16如图,一个点在第一象限及轴、轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图
4、中箭头所示方向运动即(0,0)(0,1)(1,1)(1,0),那么第42秒时质点所在位置的坐标是_十七、解答题17(1)计算:(2)计算:(3)已知,求的值.十八、解答题18求满足下列各式的未知数(1)(2)十九、解答题19如图,已知AED=C,DEF=B,试说明EFG+BDG=180,请完成下列填空:AED=C (_)EDBC(_) DEF=EHC (_)DEF=B(已知)_(等量代换)BDEH(同位角相等,两直线平行)BDG=DFE(两直线平行,内错角相等)_(邻补角的意义)EFG+BDG=180(_)二十、解答题20在平面直角坐标系中,为坐标原点,点的坐标为,点坐标为,且满足(1)若没有
5、平方根,且点到轴的距离是点到轴距离的倍,求点的坐标;(2)点的坐标为,的面积是的倍,求点的坐标二十一、解答题21一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根二十二、解答题22如图,在33的方格中,有一阴影正方形,设每一个小方格的边长为1个单位请解决下面的问题(1)阴影正方形的面积是_?(可利用割补法求面积)(2)阴影正方形的边长是_?(3)阴影正方形的边长介于哪两个整数之间?请说明理由二十三、解答题23如图1,/,点、分别在、上,点在直线、之间,且(1)求的值;(2)如图2,直线分别交、的角平分线于点、,直接写出的值;(3)如图3,在内,;在内,直线分别交、分别于点、,且,直
6、接写出的值二十四、解答题24如图1,D是ABC延长线上的一点,CEAB(1)求证:ACDA+B;(2)如图2,过点A作BC的平行线交CE于点H,CF平分ECD,FA平分HAD,若BAD70,求F的度数(3)如图3,AHBD,G为CD上一点,Q为AC上一点,GR平分QGD交AH于R,QN平分AQG交AH于N,QMGR,猜想MQN与ACB的关系,说明理由二十五、解答题25如图,ABC中,ABC的角平分线与ACB的外角ACD的平分线交于A1(1)当A为70时,ACD-ABD=_ACD-ABD=_BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1CD-A1BD=(ACD-ABD)A1=_
7、;(2)A1BC的角平分线与A1CD的角平分线交于A2,A2BC与A2CD的平分线交于A3,如此继续下去可得A4、An,请写出A与An的数量关系_;(3)如图2,四边形ABCD中,F为ABC的角平分线及外角DCE的平分线所在的直线构成的角,若A+D=230度,则F=_(4)如图3,若E为BA延长线上一动点,连EC,AEC与ACE的角平分线交于Q,当E滑动时有下面两个结论:Q+A1的值为定值;Q-A1的值为定值其中有且只有一个是正确的,请写出正确的结论,并求出其值【参考答案】一、选择题1C解析:C【分析】根据同位角,同旁内角,内错角的定义可以得到结果【详解】解:A、与不是内错角,故错误;B、与是
8、邻补角,故错误;C、与是同旁内角,故正确;D、与是同位角,故错误;故选C【点睛】本题主要考查了同位角,内错角,同旁内角的概念,比较简单2C【分析】根据平移的性质,对选项进行一一分析,利用排除法求解【详解】解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移;B、电梯上上下下地迎送来客,符合平移的性质,故属于平移解析:C【分析】根据平移的性质,对选项进行一一分析,利用排除法求解【详解】解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移;B、电梯上上下下地迎送来客,符合平移的性质,故属于平移;C、一棵树倒映在湖中,山与它在湖中的像成轴对称,故不属于平移;D、火车在笔直的铁轨上
9、飞弛而过,符合平移的性质,故属于平移;故选:C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或轴对称3C【分析】根据点在第二象限的符号特点横坐标是负数,纵坐标是正数作答【详解】解:A、(-,0)在x轴上,故本选项不符合题意;B、(2,-1)在第四象限,故本选项不符合题意;D、(-2,1)在第二象限,故本选项符合题意;D、(-2,-1)在第三象限,故本选项不符合题意故选:C【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(
10、-,-);第四象限(+,-)4D【分析】根据平行线的定义,平行线公理,同一平面内,直线的位置关系,逐一判断各个小题,即可得到答案【详解】在同一平面内,两条不相交的直线叫做平行线,故本小题错误,过直线外一点有且只有一条直线与已知直线平行,故本小题错误,在同一平面内不平行的两条直线一定相交;故本小题错误,两条直线与第三条直线相交,那么这两条直线不一定相交,故本小题错误综上所述:错误的个数为4个故选D【点睛】本题主要考查平行线的定义,平行线公理,掌握平行线的定义,平行线公理是解题的关键5C【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可【详解】解:(
11、1)如图1,由ABCD,可得AOCDCE1,AOCBAE1AE1C,AE1C(2)如图2,过E2作AB平行线,则由ABCD,可得1BAE2,2DCE2,AE2C(3)如图3,由ABCD,可得BOE3DCE3,BAE3BOE3AE3C,AE3C(4)如图4,由ABCD,可得BAE4AE4CDCE4360,AE4C360综上所述,AEC的度数可能是,360故选:C【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等6B【分析】根据平方根以及立方根的概念进行判断即可【详解】A、-8的立方根为-2,这个说法正确;B、|1-|=-1,这个说法错误;C-的相
12、反数是,这个说法正确;D、3的平方根是,这个说法正确;故选B【点睛】本题主要考查了平方根与立方根,一个数的立方根只有一个,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根7B【分析】延长,交于点,根据角平分线的定义以及已知条件可得,由三角形的外角性质可求,最后由平行线的性质即可求解【详解】延长,交于点, BE平分ABD,,DEB80,,故选B【点睛】本题考查了角平分线的定义,平行线的性质,三角形的外角性质,掌握以上知识是解题的关键8C【分析】计算点P走一个半圆的时间,确定第21秒点P的位置【详解】点P运动一个半圆用时为秒,21102+1,21秒时,P在第11个的半圆
13、的最高点,点P坐标为(21,1),解析:C【分析】计算点P走一个半圆的时间,确定第21秒点P的位置【详解】点P运动一个半圆用时为秒,21102+1,21秒时,P在第11个的半圆的最高点,点P坐标为(21,1),故选:C【点睛】本题考查了点的坐标规律,关键是计算出点P走一个半圆的时间九、填空题91.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移解析:1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可【详解】解:,故答案为1.
14、01【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键十、填空题10-1【分析】直接利用关于y轴对称点的性质得出a,b的值进而得出答案【详解】解:点A(a,2019)与点是关于y轴的对称点,a=-2020,b=2019,a+b=-1故答案为:解析:-1【分析】直接利用关于y轴对称点的性质得出a,b的值进而得出答案【详解】解:点A(a,2019)与点是关于y轴的对称点,a=-2020,b=2019,a+b=-1故答案为:-1【点睛】本题考查关于y轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系十一、填空题11【解析】已知C=90,AD是ABC的角平分线,DEAB
15、,根据角平分线的性质可得DC=DE=1;因,根据30直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.解析:【解析】已知C=90,AD是ABC的角平分线,DEAB,根据角平分线的性质可得DC=DE=1;因,根据30直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.十二、填空题1240【分析】根据ab,可以得到1=DAE,2=CAB,再根据DAC=90,即可求解.【详解】解:如图所示ab1=DAE,2=CABDAC=90D解析:40【分析】根据ab,可以得到1=DAE,2=CAB,再根据DAC=90,即可求解.【详解】解:如图所示ab1=DAE,2=C
16、ABDAC=90DAE+CAB=180-DAC=901+2=902=90-1=40故答案为:40.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.十三、填空题13108【分析】由折叠的性质可得:DEF=GEF,根据平行线的性质:两直线平行,内错角相等可得:DEF=EFG=54,从而得到GEF=54,根据平角的定义即可求得1,再由平行线的解析:108【分析】由折叠的性质可得:DEF=GEF,根据平行线的性质:两直线平行,内错角相等可得:DEF=EFG=54,从而得到GEF=54,根据平角的定义即可求得1,再由平行线的性质求得EGB【详解】解:ADBC,EFG=54,D
17、EF=EFG=54,1+2=180,由折叠的性质可得:GEF=DEF=54,1=180-GEF-DEF=180-54-54=72,EGB=180-1=108故答案为:108【点睛】此题主要考查折叠的性质,平行线的性质和平角的定义,解决问题的关键是根据折叠的方法找准对应角,求出GEF的度数十四、填空题14【分析】根据题中的新定义化简所求式子,计算即可求出的值【详解】解:根据题中的新定义得:,移项合并得:,解得:,故答案是:【点睛】此题考查了解一元一次方程,解题的关键是掌握其步骤解析:【分析】根据题中的新定义化简所求式子,计算即可求出的值【详解】解:根据题中的新定义得:,移项合并得:,解得:,故答
18、案是:【点睛】此题考查了解一元一次方程,解题的关键是掌握其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解十五、填空题15(2,2)或(4,-4)【分析】点P到x轴的距离表示为,点P到y轴的距离表示为,根据题意得到=,然后去绝对值求出x的值,再写出点P 的坐标【详解】解:点P到两坐标轴的距离相等=解析:(2,2)或(4,-4)【分析】点P到x轴的距离表示为,点P到y轴的距离表示为,根据题意得到=,然后去绝对值求出x的值,再写出点P 的坐标【详解】解:点P到两坐标轴的距离相等=3a-1=3-a或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1
19、时,3-a=4,3a-1=-4点P的坐标为(2,2)或(4,-4)故答案为(2,2)或(4,-4)【点睛】本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;到x轴的距离与纵坐标有关;距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号十六、填空题16(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答【详解】由题意可知质点移动的速度是1个单位长度秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:(6,6)【分析】根据质点移动的各点的坐标与时间的关系
20、,找出规律即可解答【详解】由题意可知质点移动的速度是1个单位长度秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+48秒,到(0,3)时用了9秒,从(0,3)到(3,0)有六个单位长度,则到(3,0)时用了9+615秒,以此类推到(4,0)用了16秒,到(0,4)用了16+824秒,到(0,5)用了25秒,到(5,0)用了25+1035秒,故第42秒时质点到达的位置为(6,6),故答案为:(6,6)【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键十七、解答题17(1
21、)2;(2)6;(3) 或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;解析:(1)2;(2)6;(3) 或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;(3)直接利用平方根的定义计算得出答案【详解】解:(1),;(2),;(3)解得:或故答案为:(1)2;(2)6;(3) 或【点睛】本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键十八、解答题18(1)或
22、;(2)【分析】(1)根据平方根的定义直接开平方求解即可;(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.【详解】解:(1),即或,解得或(2),解得解析:(1)或;(2)【分析】(1)根据平方根的定义直接开平方求解即可;(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.【详解】解:(1),即或,解得或(2),解得【点睛】本题主要考查平方根和立方根的应用,解决本题的关键是要熟练掌握平方根和立方根的定义.十九、解答题19已知;同位角相等,两直线平行;两直线平行,内错角相等;EHC =B;DFE+EFG =180;等量代换【分析】根据同位角相等,两直线平行推出EDBC,通过两
23、直线平行,内错角相等推出解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;EHC =B;DFE+EFG =180;等量代换【分析】根据同位角相等,两直线平行推出EDBC,通过两直线平行,内错角相等推出DEF=EHC,再运用等量代换得到EHC =B,最后推出BDEH,BDG=DFE,再利用邻补角的意义推出结论,据此回答问题【详解】解:AED=C (已知)EDBC(同位角相等,两直线平行) DEF=EHC (两直线平行,内错角相等)DEF=B(已知)EHC =B (等量代换)BDEH(同位角相等,两直线平行)BDG=DFE(两直线平行,内错角相等)DFE+EFG =180(邻补角的意义)
24、EFG+BDG=180(等量代换)【点睛】本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键二十、解答题20(1)(-2,6);(2)(,)或(8,-4)【分析】(1)根据平方根的意义得到a0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;(2)利用A(a,-解析:(1)(-2,6);(2)(,)或(8,-4)【分析】(1)根据平方根的意义得到a0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;(2)利用A(a,-a)和B(a,4-a)得到AB=4,AB与y轴平行,由于点D的坐标
25、为(4,-2),OAB的面积是DAB面积的2倍,则判断点A、点B在y轴的右侧,即a0,根据三角形面积公式得到,解方程得到a值,然后写出B点坐标【详解】解:(1)a没有平方根,a0,-a0,点B到x轴的距离是点A到x轴距离的3倍,a+b=4,解得:a=-2或a=1(舍),b=6,此时点B的坐标为(-2,6);(2)点A的坐标为(a,-a),点B坐标为(a,4-a),AB=4,AB与y轴平行,点D的坐标为(4,-2),OAB的面积是DAB面积的2倍,点A、点B在y轴的右侧,即a0,解得:a=或a=8,B点坐标为(,)或(8,-4)【点睛】本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段
26、与坐标轴的位置关系也考查了三角形的面积公式和平方根的性质二十一、解答题21【分析】根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案【详解】一个正数的两个平方根为和,解得:,是的立方根,解得:,解析:【分析】根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案【详解】一个正数的两个平方根为和,解得:,是的立方根,解得:,的整数部分是6,则小数部分是:,的平方根为:【点睛】本题考查了平方根的性质,立方根的定义,估算无理数的大小,解题的关键是正确理解平方根的定义以及“夹逼法”的运用二十二、解答题22(1)5;(2);(3
27、)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解【详解】(1)阴影正方形的解析:(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解【详解】(1)阴影正方形的面积是33-4=5故答案为:5;(2)设阴影正方形的边长为x,则x2=5x=(-舍去)故答案为:;(3)阴影正方形的边长介于2与3两个整数之间【点睛】本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法通过观察可知阴影部分的面积是5个小正
28、方形的面积和会利用估算的方法比较无理数的大小二十三、解答题23(1) ;(2)的值为40;(3)【分析】(1)过点O作OGAB,可得ABOGCD,利用平行线的性质可求解;(2)过点M作MKAB,过点N作NHCD,由角平分线的定义可设BEM解析:(1) ;(2)的值为40;(3)【分析】(1)过点O作OGAB,可得ABOGCD,利用平行线的性质可求解;(2)过点M作MKAB,过点N作NHCD,由角平分线的定义可设BEM=OEM=x,CFN=OFN=y,由BEO+DFO=260可求x-y=40,进而求解;(3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得
29、,结合,可得即可得关于n的方程,计算可求解n值【详解】证明:过点O作OGAB,ABCD,ABOGCD,即 EOF=100,;(2)解:过点M作MKAB,过点N作NHCD,EM平分BEO,FN平分CFO,设x-y=40,MKAB,NHCD,ABCD,ABMKNHCD, =x-y=40,故的值为40;(3)如图,设直线FK与EG交于点H,FK与AB交于点K,ABCD, 即FK在DFO内, ,即解得 经检验,符合题意,故答案为:【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键二十四、解答题24(1)证明见解析;(2)F=55;(3)MQNACB;理由见解析【分析】(
30、1)首先根据平行线的性质得出ACEA,ECDB,然后通过等量代换即可得出答案;(2)首先根据角解析:(1)证明见解析;(2)F=55;(3)MQNACB;理由见解析【分析】(1)首先根据平行线的性质得出ACEA,ECDB,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出FCDECD,HAFHAD,进而得出F(HAD+ECD),然后根据平行线的性质得出HAD+ECD的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出, ,再通过等量代换即可得出MQNACB【详解】解:(1)CEAB,ACEA,ECDB,ACDACE+ECD,ACDA+B;(2)CF平分ECD,FA平分
31、HAD,FCDECD,HAFHAD,FHAD+ECD(HAD+ECD),CHAB,ECDB,AHBC,B+HAB180,BAD70, F(B+HAD)55;(3)MQNACB,理由如下:平分, 平分, , MQNMQGNQG180QGRNQG180(AQG+QGD)180(180CQG+180QGC)(CQG+QGC)ACB【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键二十五、解答题25(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD解析
32、:(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD=ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得ACD=A+ABC,A1CD=A1BC+A1,整理即可得解;(2)由A1CD=A1+A1BC,ACD=ABC+A,而A1B、A1C分别平分ABC和ACD,得到ACD=2A1CD,ABC=2A1BC,于是有BAC=2A1,同理可得A1=2A2,即A=22A2,因此找出规律;(3)先根据四边形内角和等于360,得出ABC+DCB=360-(+),根据内角与外角的关系和角平分线的
33、定义得出ABC+(180-DCE)=360-(+)=2FBC+(180-2DCF)=180-2(DCF-FBC)=180-2F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2A1=AEC+ACE=2(QEC+QCE),利用三角形内角和定理表示出QEC+QCE,即可得到A1和Q的关系【详解】解:(1)当A为70时,ACD-ABD=A,ACD-ABD=70,BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线,A1CD-A1BD=(ACD-ABD)A1=35;故答案为:A,70,35;(2)A1B、A1C分别平分ABC和ACD,ACD=2A1CD,ABC=2A1BC,而A1CD=
34、A1+A1BC,ACD=ABC+BAC,BAC=2A1=80,A1=40,同理可得A1=2A2,即BAC=22A2=80,A2=20,A=2nAn,故答案为:A=2An(3)ABC+DCB=360-(A+D),ABC+(180-DCE)=360-(A+D)=2FBC+(180-2DCF)=180-2(DCF-FBC)=180-2F,360-(+)=180-2F,2F=A+D-180,F=(A+D)-90,A+D=230,F=25;故答案为:25(4)Q+A1的值为定值正确ACD-ABD=BAC,BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1=A1CD-A1BD=BAC, AEC+ACE=BAC,EQ、CQ是AEC、ACE的角平分线,QEC+QCE=(AEC+ACE)=BAC,Q=180-(QEC+QCE)=180-BAC,Q+A1=180【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100