1、人教版中学七年级下册数学期末复习(及解析)一、选择题1“49的平方根是”的表达式正确的是()ABCD2如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( )ABCD3下列各点中,在第四象限的是( )ABCD4下列命题中,是假命题的是( )A两条直线被第三条直线所截,同位角相等B同旁内角互补,两直线平行C在同一平面内,过一点有且只有一条直线与已知直线垂直D如果两条直线都与第三条直线平行,那么这两条直线也互相平行5将一张边沿互相平行的纸条如图折叠后,若边,则翻折角与一定满足的关系是( )ABCD6若,则a,b,c的大小关系是( )ABCD7如图,直线l1l2且与直线l3相交于A、C两点过
2、点A作ADAC交直线l2于点D若BAD35,则ACD()A35B45C55D708如下图所示,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次运动到点,第3次运动到点,按照这样的运动规律,点第2021次运动到点( )ABCD九、填空题925的算术平方根是 _.十、填空题10点关于轴的对称点的坐标为_十一、填空题11如图,在ABC中,ACB90,AD是ABC的角平分线,BC10cm,BD:DC3:2,则点D到AB的距离为_十二、填空题12如图,已知ABCD,如果1100,2120,那么3_度十三、填空题13如图,将一张长方形纸片沿折叠后,点,分别落在,的位置,若,则的度
3、数为_十四、填空题14对于这样的等式:若(x+1)5a0x5+a1x4+a2x3+a3x2+a4x+a5,则32a0+16a18a2+4a32a4+a5的值为_十五、填空题15已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标_.十六、填空题16在平面直角坐标系中,点A与原点重合,将点A向右平移1个单位长度得到点A1,将A1向上平移2个单位长度得到点A2,将A2向左平移3个单位长度得到A3,将A3向下平移4个单位长度得到A4,将A4向右平移5个单位长度得到A5按此方法进行下去,则A2021点坐标为_十七、解答题17计算下列各式的值:(1) (2)十八、解答题18(1)已知am3
4、,an5,求a3m2n的值(2)已知xy,xy,求下列各式的值:x2yxy2;x2y2.十九、解答题19根据下列证明过程填空:已知:如图,于点,于点,求证:证明:,(已知)(_)(_)(_)又(已知)(_)(_)(_)二十、解答题20三角形ABC在平面直角坐标系中的位置如图所示,点为坐标原点,(1)将向右平移4个单位长度得到,画出平移后的;(2)将向下平移5个单位长度得到,画出平移后的;(3)直接写出三角形的面积为_平方单位(直接写出结果)二十一、解答题21大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小聪用来表示的小数部分,你同意小聪的表示方法吗?事实上
5、小聪的表示方法是有道理的,因为的整数部分是1,用个数减去其整数部分,差就是它的小数部分请解答下列问题:(1)的整数部分是_,小数部分是_(2)如果的小数部分是a,的整数部分是b,求的值(3)已知,其中x是正整数,求的相反数二十二、解答题22如图1,用两个边长相同的小正方形拼成一个大的正方形(1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm(2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为32,他能裁出吗?请说明理由二十三、解答题23已知,定点,分别在直线,上,在平行线,之间有一动点(1)如图1所示时,试问,
6、满足怎样的数量关系?并说明理由(2)除了(1)的结论外,试问,还可能满足怎样的数量关系?请画图并证明(3)当满足,且,分别平分和,若,则_猜想与的数量关系(直接写出结论)二十四、解答题24已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,使(1)如图,若平分,求的度数;(2)如图,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角若,求的度数;若(n为正整数),直接用含n的代数式表示二十五、解答题25如图,将一副直角三角板放在同一条直线AB上,其中ONM30,OCD45(1)将图中的三角板OMN沿BA的方向平移至图的位置,MN与CD相交于点E,求CEN的度数;(2
7、)将图中的三角板OMN绕点O按逆时针方向旋转,使BON30,如图,MN与CD相交于点E,求CEN的度数;(3)将图中的三角板OMN绕点O按每秒30的速度按逆时针方向旋转一周,在旋转的过程中,在第_秒时,直线MN恰好与直线CD垂直(直接写出结果)【参考答案】一、选择题1A解析:A【分析】根据平方根的表示方法,即可得到答案【详解】解:“49的平方根是”表示为:故选A【点睛】本题主要考查平方根的表示法,掌握正数a的平方根表示为,是解题的关键2C【分析】根据平移的特点即可判断【详解】将图进行平移,得到的图形是故选C【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义解析:C【分析】根据平移的特点
8、即可判断【详解】将图进行平移,得到的图形是故选C【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义3B【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答【详解】解:A、(3,0)在x轴上,不合题意;B、(2,-5)在第四象限,符合题意;C、(-5,-2)在第三象限,不合题意;D、(-2,3),在第二象限,不合题意故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4A【分析】根据平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推
9、论可逐项判断求解【详解】解:A.两平行直线被第三条直线所截得的同位角相等,故此选项为假命题,符合题意;B. 同旁内角互补,两直线平行,真命题,不符合题意;C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,真命题,不符合题意;D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,真命题,不符合题意;故选A【点睛】本题主要考查平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论,掌握相关内容是解题的关键5B【分析】根据平行可得出DAB+CBA=180,再根据折叠和平角定义可求出【详解】解:由翻折可知,DAE=2,CBF=2,,DAB+CBA=180,DAE+CBF=180
10、,即,故选:B【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算6D【分析】根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案【详解】解:,故选:D【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简7C【分析】由题意易得CAD=90,则有CAB=125,然后根据平行线的性质可求解【详解】解:ADAC,CAD=90,BAD35,CAB=BAD+CAD=125,l1l2,ACD+CAB=180,ACD55;故选C【点睛】本题主要考查垂线的定义及平行线的性质,熟练掌握垂线的定义及平行
11、线的性质是解题的关键8A【分析】令P点第n次运动到的点为Pn点(n为自然数)列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n1(4n1,1),P4n2(4n2,0),P4n3(4解析:A【分析】令P点第n次运动到的点为Pn点(n为自然数)列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n1(4n1,1),P4n2(4n2,0),P4n3(4n3,1)”,根据该规律即可得出结论【详解】解:令P点第n次运动到的点为Pn点(n为自然数)观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,1),P4(4,0),P5(5,1),P4
12、n(4n,0),P4n1(4n1,1),P4n2(4n2,0),P4n3(4n3,1)202150541,P第2021次运动到点(2021,1)故选:A【点睛】本题考查了规律型中的点的坐标,属于基础题,难度适中,解决该题型题目时,根据点的变化罗列出部分点的坐标,根据坐标的变化找出变化规律是关键九、填空题95【详解】试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根52=25, 25的算术平方根是5考点:算术平方根解析:5【详解】试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根52=25, 25的算术平方根是5考点:算术平方根十、填空题10【分析】关于y轴对称的
13、点,纵坐标相同,横坐标互为相反数.【详解】关于y轴对称的点,纵坐标相同,横坐标互为相反数点关于y轴的对称点的坐标为.故答案为:【点睛】考核知识点:轴对称与点解析:【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】关于y轴对称的点,纵坐标相同,横坐标互为相反数点关于y轴的对称点的坐标为.故答案为:【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.十一、填空题114cm【详解】BC=10cm,BD:DC=3:2,BD=6cm,CD=4cm,AD是ABC的角平分线,ACB=90,点D到AB的距离等于DC,即点D到AB的距离等于4cm解析:4cm【详解】BC=10cm
14、,BD:DC=3:2,BD=6cm,CD=4cm,AD是ABC的角平分线,ACB=90,点D到AB的距离等于DC,即点D到AB的距离等于4cm十二、填空题1240【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,即可确定出的度数【详解】解:如图:过作平行于,即,故答案为:40【解析:40【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,即可确定出的度数【详解】解:如图:过作平行于,即,故答案为:40【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键十三、填空题1350【分析】先根据平行线的性质得出DEF
15、的度数,再根据翻折变换的性质得出DEF的度数,根据平角的定义即可得出结论【详解】解:ADBC,EFB65,DEF65,解析:50【分析】先根据平行线的性质得出DEF的度数,再根据翻折变换的性质得出DEF的度数,根据平角的定义即可得出结论【详解】解:ADBC,EFB65,DEF65,又DEFDEF,DEF65,AED50故答案是:50【点睛】本题考查的是折叠的性质以及平行线的性质,用到的知识点为:两直线平行,内错角相等十四、填空题14-1【分析】根据多项式的乘法得出字母的值,进而代入解答即可【详解】解:(x+1)5x5+5x4+10x3+10x2+5x+1,(x+1)5a0x5+a1x4+a2x
16、3+a3x2+解析:-1【分析】根据多项式的乘法得出字母的值,进而代入解答即可【详解】解:(x+1)5x5+5x4+10x3+10x2+5x+1,(x+1)5a0x5+a1x4+a2x3+a3x2+a4x+a5,a01,a15,a210,a310,a45,a51,把a01,a15,a210,a310,a45,a51代入32a0+16a18a2+4a32a4+a5中,可得:32a0+16a18a2+4a32a4+a532+8080+4010+11,故答案为:1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值.十五、填空题15(4,0)或(4,0)【详解
17、】试题解析:设C点坐标为(|x|,0) 解得:x=4所以,点C的坐标为(4,0)或(-4,0).解析:(4,0)或(4,0)【详解】试题解析:设C点坐标为(|x|,0) 解得:x=4所以,点C的坐标为(4,0)或(-4,0).十六、填空题16(1011,1010)【分析】求出A1(1,0),A5(3,2),A9(5,4),A13(7,6),探究规律可得A2021(1011,1010)【详解】解:由题意A1(1解析:(1011,1010)【分析】求出A1(1,0),A5(3,2),A9(5,4),A13(7,6),探究规律可得A2021(1011,1010)【详解】解:由题意A1(1,0),A5
18、(3,2),A9(5,4),A13(7,6),可以看出,3,5,7,各个点的纵坐标等于横坐标的相反数+1,故1011,A2021(1011,1010),故答案为:(1011,1010)【点评】本题考查坐标与图形变化平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型十七、解答题17(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可【详解】解:(1) (2) 【点睛】本题考解析:(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再
19、合并即可【详解】解:(1) (2) 【点睛】本题考查的是实数的运算,考查,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键十八、解答题18(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)利用提公因式法因式分解解答即可;根据完全平方公式计算即可【详解】解:(1),解析:(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)利用提公因式法因式分解解答即可;根据完全平方公式计算即可【详解】解:(1),;(2),;,【点睛】本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算
20、法则是解答本题的关键十九、解答题19;垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;GD;同位角相等,两直线平行;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可【详解】解析:;垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;GD;同位角相等,两直线平行;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可【详解】证明:证明:,(已知)(垂直的定义)(同位角相等,两直线平行)(两直线平行,同位角相等)又(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)【点睛】本题考查证明过程
21、中每一步的依据,根据推理过程明白相关知识点是解题关键二十、解答题20(1)见解析;(2)见解析;(3)【分析】(1)把三角形的各顶点向右平移4个单位长度,得到、的对应点、,再顺次连接即可得到三角形;(2)把三角形的各顶点向下平移5个单位长度,得到、的对应解析:(1)见解析;(2)见解析;(3)【分析】(1)把三角形的各顶点向右平移4个单位长度,得到、的对应点、,再顺次连接即可得到三角形;(2)把三角形的各顶点向下平移5个单位长度,得到、的对应点、,再顺次连接即可得到三角形;(3)三角形的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形
22、的面积【详解】解:(1)平移后的三角形如下图所示;(2)平移后的三角形如下图所示;(3)三角形的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积,SABC【点睛】本题考查了作图平移变换,解题的关键是要掌握图形的平移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差二十一、解答题21(1)3;(2)7;(3)【分析】(1)先求出的取值范围,即可求出的整数部分,从而求出结论;(2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解;(解析:(1)3;(2)7;(
23、3)【分析】(1)先求出的取值范围,即可求出的整数部分,从而求出结论;(2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解;(3)根据题意先求出x,y所表示的数,再求出x-y,即可求出其相反数【详解】解:(1)34,的整数部分是3,小数部分是故答案为:3;(2)的小数部分a=2=的整数部分b=4=4=7;(3)的整数部分为2,小数部分为2=,其中x是正整数,y=的相反数为【点睛】此题考查的是求无理数的整数部分和小数部分,掌握无理数的估算方法是解题关键二十二、解答题22(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股
24、定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可【详解】解:解析:(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可【详解】解:(1)正方形纸片的面积为,正方形的边长,故答案为:(2)不能;根据题意设长方形的长和宽分别为和长方形面积为:,解得:,长方形的长边为,他不能裁出【点睛】本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键二十三、解答题23(1)AEP+PFC=EPF;(2)A
25、EP+EPF+PFC=360;(3)150或30;EPF+2EQF=360或EPF=2EQF【分析】(1)由于点是平行线,之间解析:(1)AEP+PFC=EPF;(2)AEP+EPF+PFC=360;(3)150或30;EPF+2EQF=360或EPF=2EQF【分析】(1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,满足数量关系为:;(2)当点在的右侧时,满足数量关系为:;(3)若当点在的左侧时,;当点在的右侧时,可求得;结合可得,由,得出;可得,由,得出【详解】解:(1)如图1,过点作,;(2)如图2,当点在的右侧时,满足数量关系为:;过点作,;(
26、3)如图3,若当点在的左侧时,分别平分和,;如图4,当点在的右侧时,;故答案为:或30;由可知:,;,综合以上可得与的数量关系为:或【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键二十四、解答题24(1);(2);【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最解析:(1);(2);【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)根据角相等和角的和差可得EOC=BOD,
27、再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论;根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论【详解】解:(1)平分,;(2),EOC+COD=BOD+COD,EOC=BOD,;,EOC+COD=BOD+COD,EOC=BOD,【点睛】本题考查邻补角的计算,角的和差,角平分线的有关计算能正确识图,利用角的和差求得相应角的度数是解题关键二十五、解答题25(1)105;(2)135;(3)5.5或11.5.【分析】(1)在CEN中,用三角形内角和定理即可求出;(2)由BON30,N=30可得MNCB,再根据两直线平行,同旁内角解析
28、:(1)105;(2)135;(3)5.5或11.5.【分析】(1)在CEN中,用三角形内角和定理即可求出;(2)由BON30,N=30可得MNCB,再根据两直线平行,同旁内角互补即可求出CEN的度数.(3)画出图形,求出在MNCD时的旋转角,再除以30即得结果.【详解】解:(1)在CEN中,CEN=180ECNCNE=1804530=105;(2)BON30,N=30,BONN,MNCB.OCD+CEN=180,OCD=45CEN=18045=135;(3)如图,MNCD时,旋转角为360904560=165,或360(6045)=345,所以在第16530=5.5或34530=11.5秒时,直线MN恰好与直线CD垂直【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去DOM的度数.
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100