1、高中数学知识点 高中数学第一章-集合 01、 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式得解法(集合化简)、简易逻辑三部分: 二、知识回顾:(一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号得使用、2. 集合得表示法:列举法、描述法、图形表示法、集合元素得特征:确定性、互异性、无序性、 集合得性质:任何一个集合就是它本身得子集,记为;空集就是任何集合得子集,记为;空集就是任何非空集合得真子集;如果,同时,那么A = B、如果、注:Z= 整数() Z =全体整数 ()已知集合S 中A得补集就是一个有限集,则集合A也就是有限集、()(例:S=N;
2、A=,则CsA= 0) 空集得补集就是全集、 若集合A=集合B,则CBA = , CAB = CS(CAB)= D ( 注 :CAB = )、3、 (x,y)|xy =0,xR,yR坐标轴上得点集、(x,y)|xy0,xR,yR二、四象限得点集、 (x,y)|xy0,xR,yR 一、三象限得点集、注:对方程组解得集合应就是点集、例: 解得集合(2,1)、点集与数集得交集就是、 (例:A =(x,y)| y =x+1 B=y|y =x2+1 则AB =)4、 n个元素得子集有2n个、 n个元素得真子集有2n 1个、 n个元素得非空真子集有2n2个、5、 一个命题得否命题为真,它得逆命题一定为真、
3、 否命题逆命题、一个命题为真,则它得逆否命题一定为真、 原命题逆否命题、例:若应就是真命题、解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真、 、解:逆否:x + y =3x = 1或y = 2、,故就是得既不就是充分,又不就是必要条件、小范围推出大范围;大范围推不出小范围、3. 例:若、 4. 集合运算:交、并、补、5. 主要性质与运算律(1) 包含关系:(2) 等价关系: (二)含绝对值不等式、一元二次不等式得解法及延伸 1、整式不等式得解法根轴法(零点分段法)从右向左,从上向下,奇穿偶回,零点讨论将不等式化为a0(x-x1)(x-x2)(x-xm)0(0”,则找
4、“线”在x轴上方得区间;若不等式就是“b解得讨论;一元二次不等式ax2+box0(a0)解得讨论、 二次函数()得图象一元二次方程有两相异实根有两相等实根 无实根 R 2、分式不等式得解法(1)标准化:移项通分化为0(或0); 0(或0)得形式,(2)转化为整式不等式(组)3、含绝对值不等式得解法(1)公式法:,与型得不等式得解法、(2)定义法:用“零点分区间法”分类讨论、(3)几何法:根据绝对值得几何意义用数形结合思想方法解题、4、一元二次方程根得分布一元二次方程ax2+bx+c=0(a0)(1)根得“零分布”:根据判别式与韦达定理分析列式解之、(2)根得“非零分布”:作二次函数图象,用数形
5、结合思想分析列式解之、(三)简易逻辑1、命题得定义:可以判断真假得语句叫做命题。2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词得命题就是简单命题;由简单命题与逻辑联结词“或”、“且”、“非”构成得命题就是复合命题。构成复合命题得形式:p或q(记作“pq” );p且q(记作“pq” );非p(记作“q” ) 。3、“或”、 “且”、 “非”得真值判断(1)“非p”形式复合命题得真假与F得真假相反;(2)“p且q”形式复合命题当P与q同为真时为真,其她情况时为假;(3)“p或q”形式复合命题当p与q同为假时为假,其她情况时为真.4、四种命题得形式:
6、原命题:若P则q; 逆命题:若q则p;否命题:若P则q;逆否命题:若q则p。(1)交换原命题得条件与结论,所得得命题就是逆命题; (2)同时否定原命题得条件与结论,所得得命题就是否命题; (3)交换原命题得条件与结论,并且同时否定,所得得命题就是逆否命题.5、四种命题之间得相互关系:一个命题得真假与其她三个命题得真假有如下三条关系:(原命题逆否命题)、原命题为真,它得逆命题不一定为真。、原命题为真,它得否命题不一定为真。、原命题为真,它得逆否命题一定为真。6、如果已知pq那么我们说,p就是q得充分条件,q就是p得必要条件。若pq且qp,则称p就是q得充要条件,记为pq、7、反证法:从命题结论得
7、反面出发(假设),引出(与已知、公理、定理)矛盾,从而否定假设证明原命题成立,这样得证明方法叫做反证法。高中数学第二章-函数 02、 函数 知识要点一、本章知识网络结构:二、知识回顾:(一) 映射与函数1. 映射与一一映射2、函数函数三要素就是定义域,对应法则与值域,而定义域与对应法则就是起决定作用得要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域与对应法则二者完全相同得函数才就是同一函数、(二)函数得性质函数得单调性定义:对于函数f(x)得定义域I内某个区间上得任意两个自变量得值x1,x2,若当x1x2时,都有f(x1)f(x2),则说f(x)在这个区间上就是增函数;若当x1f(
8、x2),则说f(x) 在这个区间上就是减函数、若函数y=f(x)在某个区间就是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格得)单调性,这一区间叫做函数y=f(x)得单调区间、此时也说函数就是这一区间上得单调函数、2、函数得奇偶性7、 奇函数,偶函数:偶函数:设()为偶函数上一点,则()也就是图象上一点、偶函数得判定:两个条件同时满足定义域一定要关于轴对称,例如:在上不就是偶函数、满足,或,若时,、奇函数:设()为奇函数上一点,则()也就是图象上一点、奇函数得判定:两个条件同时满足定义域一定要关于原点对称,例如:在上不就是奇函数、满足,或,若时,、8、 对称变换:y = f(x)y
9、 =f(x)y =f(x)9、 判断函数单调性(定义)作差法:对带根号得一定要分子有理化,例如:在进行讨论、10、 外层函数得定义域就是内层函数得值域、例如:已知函数f(x)= 1+得定义域为A,函数ff(x)得定义域就是B,则集合A与集合B之间得关系就是 、 解:得值域就是得定义域,得值域,故,而A,故、11、 常用变换:、证:证:12、 熟悉常用函数图象:例:关于轴对称、 关于轴对称、熟悉分式图象:例:定义域,值域值域前得系数之比、(三)指数函数与对数函数指数函数得图象与性质a10a0时,y1;x0时,0y0时,0y1;x1、(5)在 R上就是增函数(5)在R上就是减函数对数函数y=log
10、ax得图象与性质:对数运算:(以上)a10a0时 时(5)在(0,+)上就是增函数在(0,+)上就是减函数注:当时,、:当时,取“+”,当就是偶数时且时,而,故取“”、例如:中x0而中xR)、()与互为反函数、当时,得值越大,越靠近轴;当时,则相反、(四)方法总结、相同函数得判定方法:定义域相同且对应法则相同、对数运算:(以上)注:当时,、:当时,取“+”,当就是偶数时且时,而,故取“”、例如:中x0而中xR)、()与互为反函数、当时,得值越大,越靠近轴;当时,则相反、函数表达式得求法:定义法;换元法;待定系数法、反函数得求法:先解x,互换x、y,注明反函数得定义域(即原函数得值域)、函数得定
11、义域得求法:布列使函数有意义得自变量得不等关系式,求解即可求得函数得定义域、常涉及到得依据为分母不为0;偶次根式中被开方数不小于0;对数得真数大于0,底数大于零且不等于1;零指数幂得底数不等于零;实际问题要考虑实际意义等、函数值域得求法:配方法(二次或四次);“判别式法”;反函数法;换元法;不等式法;函数得单调性法、单调性得判定法:设x,x就是所研究区间内任两个自变量,且xx;判定f(x)与f(x)得大小;作差比较或作商比较、奇偶性得判定法:首先考察定义域就是否关于原点对称,再计算f(-x)与f(x)之间得关系:f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数;f(-x)-f(x)
12、=0为偶;f(x)+f(-x)=0为奇;f(-x)/f(x)=1就是偶;f(x)f(-x)=-1为奇函数、图象得作法与平移:据函数表达式,列表、描点、连光滑曲线;利用熟知函数得图象得平移、翻转、伸缩变换;利用反函数得图象与对称性描绘函数图象、高中数学 第三章 数列考试内容:数列.等差数列及其通项公式.等差数列前n项与公式.等比数列及其通项公式.等比数列前n项与公式.考试要求:(1)理解数列得概念,了解数列通项公式得意义了解递推公式就是给出数列得一种方法,并能根据递推公式写出数列得前几项.(2)理解等差数列得概念,掌握等差数列得通项公式与前n项与公式,并能解决简单得实际问题.(3)理解等比数列得
13、概念,掌握等比数列得通项公式与前n项与公式,井能解决简单得实际问题. 03、 数 列 知识要点数列数列得定义数列得有关概念数列得通项数列与函数得关系项项数通项等差数列等差数列得定义等差数列得通项等差数列得性质等差数列得前n项与等比数列等比数列得定义等比数列得通项等比数列得性质等比数列得前n项与等差数列等比数列定义递推公式;通项公式()中项()()前项与重要性质1、 等差、等比数列:等差数列等比数列定义通项公式=+(n-1)d=+(n-k)d=+-d求与公式中项公式A= 推广:2=。推广:性质1若m+n=p+q则 若m+n=p+q,则。2若成A、P(其中)则也为A、P。若成等比数列 (其中),则
14、成等比数列。3. 成等差数列。成等比数列。4 , 5瞧数列就是不就是等差数列有以下三种方法:2()(为常数)、瞧数列就是不就是等比数列有以下四种方法:(,)注:i、 ,就是a、b、c成等比得双非条件,即a、b、c等比数列、ii、 (ac0)为a、b、c等比数列得充分不必要、iii、 为a、b、c等比数列得必要不充分、iv、 且为a、b、c等比数列得充要、注意:任意两数a、c不一定有等比中项,除非有ac0,则等比中项一定有两个、(为非零常数)、正数列成等比得充要条件就是数列()成等比数列、数列得前项与与通项得关系:注: (可为零也可不为零为等差数列充要条件(即常数列也就是等差数列)若不为0,则就
15、是等差数列充分条件)、等差前n项与 可以为零也可不为零为等差得充要条件若为零,则就是等差数列得充分条件;若不为零,则就是等差数列得充分条件、 非零常数列既可为等比数列,也可为等差数列、(不就是非零,即不可能有等比数列)2、 等差数列依次每k项得与仍成等差数列,其公差为原公差得k2倍;若等差数列得项数为2,则;若等差数列得项数为,则,且, 、 3、 常用公式:1+2+3 +n = 注:熟悉常用通项:9,99,999,; 5,55,555,、4、 等比数列得前项与公式得常见应用题:生产部门中有增长率得总产量问题、 例如,第一年产量为,年增长率为,则每年得产量成等比数列,公比为、 其中第年产量为,且
16、过年后总产量为:银行部门中按复利计算问题、 例如:一年中每月初到银行存元,利息为,每月利息按复利计算,则每月得元过个月后便成为元、 因此,第二年年初可存款:=、分期付款应用题:为分期付款方式贷款为a元;m为m个月将款全部付清;为年利率、5、 数列常见得几种形式:(p、q为二阶常数)用特证根方法求解、具体步骤:写出特征方程(对应,x对应),并设二根若可设,若可设;由初始值确定、(P、r为常数)用转化等差,等比数列;逐项选代;消去常数n转化为得形式,再用特征根方法求;(公式法),由确定、转化等差,等比:、选代法:、用特征方程求解:、由选代法推导结果:、6、 几种常见得数列得思想方法:等差数列得前项
17、与为,在时,有最大值、 如何确定使取最大值时得值,有两种方法:一就是求使,成立得值;二就是由利用二次函数得性质求得值、如果数列可以瞧作就是一个等差数列与一个等比数列得对应项乘积,求此数列前项与可依照等比数列前项与得推倒导方法:错位相减求与、 例如:两个等差数列得相同项亦组成一个新得等差数列,此等差数列得首项就就是原两个数列得第一个相同项,公差就是两个数列公差得最小公倍数、2、 判断与证明数列就是等差(等比)数列常有三种方法:(1)定义法:对于n2得任意自然数,验证为同一常数。(2)通项公式法。(3)中项公式法:验证都成立。3、 在等差数列中,有关Sn 得最值问题:(1)当0,d0时,满足得项数
18、m使得取最大值、 (2)当0时,满足得项数m使得取最小值。在解含绝对值得数列最值问题时,注意转化思想得应用。(三)、数列求与得常用方法1、 公式法:适用于等差、等比数列或可转化为等差、等比数列得数列。 2、裂项相消法:适用于其中 就是各项不为0得等差数列,c为常数;部分无理数列、含阶乘得数列等。3、错位相减法:适用于其中 就是等差数列,就是各项不为0得等比数列。 4、倒序相加法: 类似于等差数列前n项与公式得推导方法、5、常用结论1): 1+2+3+、+n = 2) 1+3+5+、+(2n-1) = 3) 4) 5) 6) 高中数学第四章-三角函数考试内容:角得概念得推广.弧度制.任意角得三角
19、函数.单位圆中得三角函数线.同角三角函数得基本关系式、正弦、余弦得诱导公式.两角与与差得正弦、余弦、正切.二倍角得正弦、余弦、正切.正弦函数、余弦函数得图像与性质.周期函数.函数y=Asin(x+)得图像.正切函数得图像与性质.已知三角函数值求角.正弦定理.余弦定理.斜三角形解法.考试要求:(1)理解任意角得概念、弧度得意义能正确地进行弧度与角度得换算.(2)掌握任意角得正弦、余弦、正切得定义;了解余切、正割、余割得定义;掌握同角三角函数得基本关系式;掌握正弦、余弦得诱导公式;了解周期函数与最小正周期得意义.(3)掌握两角与与两角差得正弦、余弦、正切公式;掌握二倍角得正弦、余弦、正切公式.(4
20、)能正确运用三角公式,进行简单三角函数式得化简、求值与恒等式证明.(5)理解正弦函数、余弦函数、正切函数得图像与性质,会用“五点法”画正弦函数、余弦函数与函数y=Asin(x+)得简图,理解A、得物理意义.(6)会由已知三角函数值求角,并会用符号arcsinxarc-cosxarctanx表示.(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.(8)“同角三角函数基本关系式:sin2+cos2=1,sin/cos=tan,tancos=1”.04、 三角函数 知识要点1、 与(0360)终边相同得角得集合(角与角得终边重合):终边在x轴上得角得集合: 终边在y轴上得角得集合:终边在坐标
21、轴上得角得集合: 终边在y=x轴上得角得集合: 终边在轴上得角得集合:若角与角得终边关于x轴对称,则角与角得关系:若角与角得终边关于y轴对称,则角与角得关系:若角与角得终边在一条直线上,则角与角得关系:角与角得终边互相垂直,则角与角得关系:2、 角度与弧度得互换关系:360=2 180= 1=0、01745 1=57、30=5718注意:正角得弧度数为正数,负角得弧度数为负数,零角得弧度数为零、弧度与角度互换公式: 1rad57、30=5718. 10、01745(rad)3、弧长公式:、 扇形面积公式:4、三角函数:设就是一个任意角,在得终边上任取(异于原点得)一点P(x,y)P与原点得距离
22、为r,则 ; ; ; ; ;、 、5、三角函数在各象限得符号:(一全二正弦,三切四余弦)6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT、7、 三角函数得定义域:三角函数 定义域sinxcosxtanx8、同角三角函数得基本关系式: 9、诱导公式: “奇变偶不变,符号瞧象限” 三角函数得公式:(一)基本关系(二)角与角之间得互换 ,、10、 正弦、余弦、正切、余切函数得图象得性质:(A、0)定义域RRR值域R周期性 奇偶性奇函数偶函数奇函数当非奇非偶当奇函数单调性上为增函数;上为减函数();上为增函数上为减函数()上为增函数()上为增函数;上为减函数()注意:与得单调性正好相反;
23、与得单调性也同样相反、一般地,若在上递增(减),则在上递减(增)、与得周期就是、或()得周期、得周期为2(,如图,翻折无效)、 得对称轴方程就是(),对称中心();得对称轴方程就是(),对称中心();得对称中心()、当;、与就是同一函数,而就是偶函数,则、函数在上为增函数、() 只能在某个单调区间单调递增、 若在整个定义域,为增函数,同样也就是错误得、定义域关于原点对称就是具有奇偶性得必要不充分条件、(奇偶性得两个条件:一就是定义域关于原点对称(奇偶都要),二就是满足奇偶性条件,偶函数:,奇函数:)奇偶性得单调性:奇同偶反、 例如:就是奇函数,就是非奇非偶、(定义域不关于原点对称)奇函数特有性
24、质:若得定义域,则一定有、(得定义域,则无此性质)不就是周期函数;为周期函数();就是周期函数(如图);为周期函数();得周期为(如图),并非所有周期函数都有最小正周期,例如: 、 有、11、三角函数图象得作法:)、几何法:)、描点法及其特例五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线)、)、利用图象变换作三角函数图象.三角函数得图象变换有振幅变换、周期变换与相位变换等.函数yAsin(x)得振幅|A|,周期,频率,相位初相(即当x0时得相位).(当A0,0 时以上公式可去绝对值符号),由ysinx得图象上得点得横坐标保持不变,纵坐标伸长(当|A|1)或缩短(当0|A|1)到原来得
25、|A|倍,得到yAsinx得图象,叫做振幅变换或叫沿y轴得伸缩变换.(用y/A替换y)由ysinx得图象上得点得纵坐标保持不变,横坐标伸长(0|1)或缩短(|1)到原来得倍,得到ysin x得图象,叫做周期变换或叫做沿x轴得伸缩变换.(用x替换x)由ysinx得图象上所有得点向左(当0)或向右(当0)平行移动个单位,得到ysin(x)得图象,叫做相位变换或叫做沿x轴方向得平移.(用x替换x)由ysinx得图象上所有得点向上(当b0)或向下(当b0)平行移动b个单位,得到ysinxb得图象叫做沿y轴方向得平移.(用y+(-b)替换y)由ysinx得图象利用图象变换作函数yAsin(x)(A0,0
26、)(xR)得图象,要特别注意:当周期变换与相位变换得先后顺序不同时,原图象延x轴量伸缩量得区别。高中数学第五章-平面向量05、 平面向量 知识要点1、本章知识网络结构2、向量得概念(1)向量得基本要素:大小与方向、(2)向量得表示:几何表示法 ;字母表示:a;坐标表示法 aj(,)、(3)向量得长度:即向量得大小,记作a、(4)特殊得向量:零向量aOaO、单位向量aO为单位向量aO1、(5)相等得向量:大小相等,方向相同(1,1)(2,2)(6) 相反向量:a=-bb=-aa+b=0(7)平行向量(共线向量):方向相同或相反得向量,称为平行向量、记作ab、平行向量也称为共线向量、3、向量得运算
27、运算类型几何方法坐标方法运算性质向量得加法1、平行四边形法则2、三角形法则向量得减法三角形法则,数乘向量1、就是一个向量,满足:2、0时, 同向;b解得讨论;一元二次不等式ax2+bx+c0(a0)解得讨论、(2)分式不等式得解法:先移项通分标准化,则(3)无理不等式:转化为有理不等式求解 (4)、指数不等式:转化为代数不等式(5)对数不等式:转化为代数不等式(6)含绝对值不等式应用分类讨论思想去绝对值; 应用数形思想;应用化归思想等价转化注:常用不等式得解法举例(x为正数): 类似于,高中数学第七章-直线与圆得方程07、 直线与圆得方程 知识要点一、直线方程、1、 直线得倾斜角:一条直线向上
28、得方向与轴正方向所成得最小正角叫做这条直线得倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角得范围就是、注:当或时,直线垂直于轴,它得斜率不存在、每一条直线都存在惟一得倾斜角,除与轴垂直得直线不存在斜率外,其余每一条直线都有惟一得斜率,并且当直线得斜率一定时,其倾斜角也对应确定、2、 直线方程得几种形式:点斜式、截距式、两点式、斜切式、特别地,当直线经过两点,即直线在轴,轴上得截距分别为时,直线方程就是:、注:若就是一直线得方程,则这条直线得方程就是,但若则不就是这条线、附:直线系:对于直线得斜截式方程,当均为确定得数值时,它表示一条确定得直线,如果变化时,对应得直线也会变化、当为
29、定植,变化时,它们表示过定点(0,)得直线束、当为定值,变化时,它们表示一组平行直线、3、 两条直线平行:两条直线平行得条件就是:与就是两条不重合得直线、 在与得斜率都存在得前提下得到得、 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论得错误、(一般得结论就是:对于两条直线,它们在轴上得纵截距就是,则,且或得斜率均不存在,即就是平行得必要不充分条件,且)推论:如果两条直线得倾斜角为则、 两条直线垂直:两条直线垂直得条件:设两条直线与得斜率分别为与,则有这里得前提就是得斜率都存在、 ,且得斜率不存在或,且得斜率不存在、 (即就是垂直得充要条件)4、 直线得交角:直线到得角(方向角);直线到得角,就是指直线绕交点依逆时针方
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100