ImageVerifierCode 换一换
格式:DOC , 页数:26 ,大小:725.04KB ,
资源ID:1724262      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1724262.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(人教七年级下册数学期末试卷(及解析).doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教七年级下册数学期末试卷(及解析).doc

1、人教七年级下册数学期末试卷(及解析) 一、选择题 1.下列各式中,正确的是() A.=±2 B.±=4 C.=-4 D.=-2 2.下列各组图形,可经平移变换,由一个图形得到另一个图形的是( ) A. B. C. D. 3.在平面直角坐标系中,下列各点在第二象限的是( ) A. B. C. D. 4.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;⑤过一点有且只有一条直线与已知直线垂直.其中真命题的个数是( ) A.1个 B.2个 C.3个 D.4个 5.如图,一

2、副直角三角板图示放置,点在的延长线上,点在边上,,,则( ) A. B. C. D. 6.下列运算正确的是( ) A. B. C. D. 7.如图,直线a∥b,∠1=74°,∠2=34°,则∠3的度数是( ) A.75° B.55° C.40° D.35° 8.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,…,按这样的运动规律,经过第2021次运动后,动点的坐标是( ) A. B. C. D. 九、填空题 9.若,则±=_________. 十、填空题 10.若点A(1+m,

3、1﹣n)与点B(﹣3,2)关于y轴对称,则(m+n)2020的值是_____. 十一、填空题 11.如图,DB是的高,AE是角平分线,,则______. 十二、填空题 12.如图,把一张长方形纸片沿折叠后,、分别落在,的位置上,与交于点,若,则______. 十三、填空题 13.如图所示,一个四边形纸片ABCD,,把纸片按如图所示折叠,使点B落在AD边上的点,AE是折痕,,则=________度. 十四、填空题 14.将按下列方式排列,若规定表示第排从左向右第个数,则(20,9)表示的数的相反数是___ 十五、填空题 15.已知点、,点P在轴上,且的面积为5

4、则点P的坐标为__________. 十六、填空题 16.在平面直角坐标系中,已知点,,,且,下列结论:①轴,②将点A先向右平移5个单位,再向下平移个单位可得到点;③若点在直线上,则点的横坐标为3;④三角形的面积为,其中正确的结论是___________(填序号). 十七、解答题 17.计算: (1)3-(-5)+(-6) (2) 十八、解答题 18.求下列各式中x的值. (1)x2﹣81=0; (2)2x2﹣16=0; (3)(x﹣2)3=﹣27. 十九、解答题 19.请把以下证明过程补充完整,并在下面的括号内填上推理理由: 已知:如图,∠1=∠

5、2,∠A=∠D. 求证:∠B=∠C. 证明:∵∠1=∠2,(已知) 又:∵∠1=∠3,( ) ∴∠2=____________(等量代换) (同位角相等,两直线平行) ∴∠A=∠BFD( ) ∵∠A=∠D(已知) ∴∠D=_____________(等量代换) ∴____________∥CD( ) ∴∠B=∠C( ) 二十、解答题 20.如图①,在平面直角坐标系中,点、在轴上,,,. (1)写出点、、的坐标. (2)如图②,过点作交轴于点,求的大小. (3)如图③,在

6、图②中,作、分别平分、,求的度数. 二十一、解答题 21.阅读下面的文字,解答问题,例如:,即, 的整数部分是2,小数部分是; (1)试解答:的整数部分是____________,小数部分是________ (2)已知小数部分是,小数部分是,且,请求出满足条件的的值. 二十二、解答题 22.(1)如图1,分别把两个边长为的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______; (2)若一个圆的面积与一个正方形的面积都是,设圆的周长为.正方形的周长为,则______(填“”,或“”,或“”) (3)如图2,若正方形的面积为,李明同学想沿这块正方形

7、边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由? 二十三、解答题 23.如图1,//,点、分别在、上,点在直线、之间,且. (1)求的值; (2)如图2,直线分别交、的角平分线于点、,直接写出的值; (3)如图3,在内,;在内,,直线分别交、分别于点、,且,直接写出的值. 二十四、解答题 24.已知,将一副三角板中的两块直角三角板如图1放置,,,,. (1)若三角板如图1摆放时,则______,______. (2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数; (3)现

8、固定,将绕点A顺时针旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出的度数. 二十五、解答题 25.如图,在中,是高,是角平分线,,. ()求、和的度数. ()若图形发生了变化,已知的两个角度数改为:当,,则__________. 当,时,则__________. 当,时,则__________. 当,时,则__________. ()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论. 【参考答案】 一、选择题 1.D 解析:D 【分析】 依据算术平方根、平方根、立方根的性质求解即可. 【详解】 解:A、,故选项

9、错误; B、,故选项错误; C、,故选项错误; D、,故选项正确; 故选D. 【点睛】 本题主要考查的是立方根、平方根、算术平方根的定义,熟练掌握相关知识是解题的关键. 2.B 【分析】 根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 【详解】 解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到; B、图形的形状和大小没有变化,符合平移的性质,属于 解析:B 【分析】 根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 【详解】 解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到; B、图形的形状和大小没有变化,符合平

10、移的性质,属于平移得到; C、图形由轴对称得到,不属于平移得到; D、图形的方向发生变化,不符合平移的性质,不属于平移得到; 故选:B. 【点睛】 本题考查平移的基本性质,平移不改变图形的形状、大小和方向.注意结合图形解题的思想. 3.D 【分析】 根据在第二象限的点的特征进行判断,即可得到答案. 【详解】 解:∵第二象限的点特征是横坐标小于零,纵坐标大于零, ∴点(-3,7)在第二象限, 故选D. 【点睛】 本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+

11、. 4.B 【分析】 根据几何初步知识对命题逐个判断即可. 【详解】 解:①对顶角相等,为真命题; ②内错角相等,只有两直线平行时,内错角才相等,此为假命题; ③平行于同一条直线的两条直线互相平行,为真命题; ④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补,此为假命题; ⑤过直线外一点有且只有一条直线与已知直线垂直,为假命题; ①③命题正确. 故选:B. 【点睛】 本题主要考查了命题的判定,熟练掌握平行线、对顶角等几何初步知识是解答本题的关键. 5.B 【分析】 根据平行线的性质可知, ,由 即可得出答案。 【详解】 解:∵ ∴

12、 ∵ ∴ ∴ 故答案是B 【点睛】 本题主要考查了平行线的性质:(1)两直线平行,同位角相等(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补. 6.C 【分析】 利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断. 【详解】 解:A、,故本选项错误; B、,故本选项错误; C、,故本选项正确; D、,故本选项错误; 故选:C. 【点睛】 此题考查了立方根和算术平方根,以及二次根式的化简,熟练掌握立方根和算术平方根的定义,二次根式的化简方法是解本题的关键. 7.C 【分析】 根据平行线的性质得出∠4=∠1=74°,然后根

13、据三角形外角的性质即可求得∠3的度数. 【详解】 解:∵直线a∥b,∠1=74°, ∴∠4=∠1=74°, ∵∠2+∠3=∠4, ∴∠3=∠4-∠2=74°-34°=40°. 故选:C. 【点睛】 本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键. 8.C 【分析】 根据第1、5、9、......位置上点的变化规律即可求出第2021个位置的点的坐标. 【详解】 解:设第n次运动后的点记为An, 根据变化规律可知,, ......, ∴,n为正整数, 解析:C 【分析】 根据第1、5、9、......位置上点的变化规律即可求出第202

14、1个位置的点的坐标. 【详解】 解:设第n次运动后的点记为An, 根据变化规律可知,, ......, ∴,n为正整数, 取,则, ∴, 故选:C. 【点睛】 本题主要考查点的坐标的变化规律,关键是要发现第1、5、9、......的位置上的点的变化规律,第2021个点刚好满足此规律. 九、填空题 9.±1.01 【分析】 根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可. 【详解】 解:∵, ∴, 故答案为±1.01. 【点睛】 本题考查了算术平方根的移 解析:±1.01 【分析】 根据算术平方根的意义,把被

15、开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可. 【详解】 解:∵, ∴, 故答案为±1.01. 【点睛】 本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键. 十、填空题 10.1 【分析】 直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案. 【详解】 解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称, ∴1+m=3,1-n=2, ∴m= 解析:1 【分析】 直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案. 【详解】 解:∵点A(1+m,1-n)与点B(

16、3,2)关于y轴对称, ∴1+m=3,1-n=2, ∴m=2,n=-1, ∴(m+n)2020=(2-1)2020=1; 故答案为:1. 【点睛】 此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键. 十一、填空题 11.【分析】 由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数. 【详解】 ∵AE是角平分线,∠BAE=26°, ∴∠FAD=∠B 解析: 【分析】 由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的

17、度数. 【详解】 ∵AE是角平分线,∠BAE=26°, ∴∠FAD=∠BAE=26°, ∵DB是△ABC的高, ∴∠AFD=90°−∠FAD=90°−26°=64°, ∴∠BFE=∠AFD=64°. 故答案为64°. 【点睛】 本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键. 十二、填空题 12.68° 【分析】 先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小. 【详解】 解:∵AD//BC,, ∴∠DEF=∠EFG=56°, 由折叠可得,∠GEF 解析:68° 【分

18、析】 先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小. 【详解】 解:∵AD//BC,, ∴∠DEF=∠EFG=56°, 由折叠可得,∠GEF=∠DEF=56°, ∴∠DEG=112°, ∴∠AEG=180°-112°=68°. 故答案为:68°. 【点睛】 本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等. 十三、填空题 13.【分析】 根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解. 【详解】 解:,, , 由翻折的性质得,

19、 , , . 故答案为:. 【点睛】 解析:【分析】 根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解. 【详解】 解:,, , 由翻折的性质得,, , , . 故答案为:. 【点睛】 本题考查了翻折变换的性质,四边形的内角和定理,直角三角形两锐角互余的性质. 十四、填空题 14.【分析】 根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列 解析: 【分析】

20、根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算. 【详解】 (20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数, ∵,即1,,,中第三个数 :, ∴的相反数为 故答案为. 【点睛】 此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键. 十五、填空题 15.(-4,0)或(6,0) 【分

21、析】 设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可; 【详解】 如图,设P(m,0), 由题意: •|1-m|•2=5, ∴m=-4或6, ∴P(-4 解析:(-4,0)或(6,0) 【分析】 设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可; 【详解】 如图,设P(m,0), 由题意: •|1-m|•2=5, ∴m=-4或6, ∴P(-4,0)或(6,0), 故答案为:(-4,0)或(6,0) 【点睛】 此题考查三角形的面积、坐标与图形性质,解题的关键是学会利用参数构建方程解决问题. 十六、填空题 16.①③④ 【分析】

22、 ①两点纵坐标相同,得到 AB //x轴,即可判断; ②根据平移规律求得平移后的点的坐标,即可判断; ③根据两点的坐标特征可知直线BCx轴,即可判断; ④求得三角形的面积,即可判断. 解析:①③④ 【分析】 ①两点纵坐标相同,得到 AB //x轴,即可判断; ②根据平移规律求得平移后的点的坐标,即可判断; ③根据两点的坐标特征可知直线BCx轴,即可判断; ④求得三角形的面积,即可判断. 【详解】 解:A(-2,4),B(3,4),它们的纵坐标相同, AB //x轴, 故①正确; 将点A 先向右平移 5 个单位,再向下平移m个单位可得到点(3,4-m), 故②错误

23、 B(3,4),C(3,m),它们的横坐标相同, BC x轴, 点 D 在直线BC上, 点 D的横坐标为 3, 故③正确; 点A(-2,4),B(3, 4),C(3,m),且m<4, AB =5,C 点到 AB 的距离为(4-m), 三角形 ABC 的面积为, 故④正确; 故答案为:①③④. 【点睛】 本题考查了平行线的判定,坐标和图形变化,平移以及点的坐标特征,明确线段的位置和大小是解题的关键. 十七、解答题 17.(1)2;(2)-1 【分析】 (1)利用加减法法则计算即可得到结果; (2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果. 【

24、详解】 (1)解:3-(-5)+(-6) =3+5-6 解析:(1)2;(2)-1 【分析】 (1)利用加减法法则计算即可得到结果; (2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果. 【详解】 (1)解:3-(-5)+(-6) =3+5-6 =2 (2)解:(-1)2- =1-4× =1-2 =-1 【点睛】 此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 十八、解答题 18.(1)x=±9;(2);(3)x=﹣1. 【分析】 (1)式子整理后,利用平方根的定义求解即可; (2)式子整理后,利用平方根的定义求解即可;

25、 (3)利用立方根的定义求解即可. 【详解】 解:(1) 解析:(1)x=±9;(2);(3)x=﹣1. 【分析】 (1)式子整理后,利用平方根的定义求解即可; (2)式子整理后,利用平方根的定义求解即可; (3)利用立方根的定义求解即可. 【详解】 解:(1)x2﹣81=0, x2=81, x=±9; (2)2x2﹣16=0, 2x2=16, x2=8, ; (3)(x﹣2)3=﹣27, x﹣2=﹣3, x=2﹣3, x=﹣1. 【点睛】 本题主要考查了平方根与立方根的定义:求a的立方根,实际上就是求哪个数的立方等于a,熟记相关定义是解答本题的关键

26、. 十九、解答题 19.对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据对顶角相等,平行线的性质与判定定理填空即可. 【详解】 证明:∵∠1=∠2,( 解析:对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据对顶角相等,平行线的性质与判定定理填空即可. 【详解】 证明:∵∠1=∠2,(已知) 又:∵∠1=∠3,(对顶角相等) ∴∠2=∠3(等量代换) (同位角相等,两直线平行) ∴∠A=∠BFD(两直线平行,同位角相等)

27、∵∠A=∠D(已知) ∴∠D=∠BFD(等量代换) ∴AB∥CD(内错角相等,两直线平行) ∴∠B=∠C(两直线平行,内错角相等). 【点睛】 本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键. 二十、解答题 20.(1),,;(2)90°;(3)45° 【分析】 (1)根据图形和平面直角坐标系,可直接得出答案; (2)根据两直线平行,内错角相等可得,则∠; (3)根据角平分线的定义可得,过点作,然后根据平行 解析:(1),,;(2)90°;(3)45° 【分析】 (1)根据图形和平面直角坐标系,可直接得出答案; (2)根据两直线平行,内错角相

28、等可得,则∠; (3)根据角平分线的定义可得,过点作,然后根据平行线的性质得出, . 【详解】 解:(1)依题意得:,,; (2)∵, ∴, ∴; (3)∵, ∴, ∵,分别平分,, ∴ , 过点作, 则,, ∴. 【点睛】 本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A,B,C的坐标是解题的关键,(3)作出平行线是解题的关键. 二十一、解答题 21.(1)4,;(2) 【分析】 (1)根据夹逼法可求的整数部分和小数部分; (2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值. 【详解】 (1)∵,即, ∴的

29、整数部分是4,小数部分 解析:(1)4,;(2) 【分析】 (1)根据夹逼法可求的整数部分和小数部分; (2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值. 【详解】 (1)∵,即, ∴的整数部分是4,小数部分是, 故答案是:4;; (2)∵, ∴, ∴, ∴的整数部分是4,小数部分是, ∵, ∴, ∴的整数部分是13,小数部分是, ∵ 所以 解得:. 【点睛】 本题考查了估算无理数的大小,无理数的整数部分及小数部分的确定方法:设无理数为m,m的整数部分a为不大于m的最大整数,小数部分b为数m减去其整数部分,即b=m-a;理解概念是解题

30、的关键. 二十二、解答题 22.(1);(2)<;(3)不能,理由见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的 解析:(1);(2)<;(3)不能,理由见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可; (3)利用方程思想求出长方形的长边,与正方形边长比较大小即可; 【详解】 解:(1)∵小正方形的边长为

31、1cm, ∴小正方形的面积为1cm2, ∴两个小正方形的面积之和为2cm2, 即所拼成的大正方形的面积为2 cm2, 设大正方形的边长为xcm, ∴ , ∴ ∴大正方形的边长为cm; (2)设圆的半径为r, ∴由题意得, ∴, ∴, 设正方形的边长为a ∵, ∴, ∴, ∴ 故答案为:<; (3)解:不能裁剪出,理由如下: ∵正方形的面积为900cm2, ∴正方形的边长为30cm ∵长方形纸片的长和宽之比为, ∴设长方形纸片的长为,宽为, 则, 整理得:, ∴, ∴, ∴, ∴长方形纸片的长大于正方形的边长, ∴不能裁出这样的长方形纸

32、片. 【点睛】 本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查. 二十三、解答题 23.(1) ;(2)的值为40°;(3). 【分析】 (1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解; (2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM 解析:(1) ;(2)的值为40°;(3). 【分析】 (1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解; (2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM=∠OEM=x,∠CFN=∠OFN=y,

33、由∠BEO+∠DFO=260°可求x-y=40°,进而求解; (3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得 即可得关于n的方程,计算可求解n值. 【详解】 证明:过点O作OG∥AB, ∵AB∥CD, ∴AB∥OG∥CD, ∴ ∴ 即 ∵∠EOF=100°, ∴∠; (2)解:过点M作MK∥AB,过点N作NH∥CD, ∵EM平分∠BEO,FN平分∠CFO, 设 ∵ ∴ ∴x-y=40°, ∵MK∥AB,NH∥CD,AB∥CD, ∴AB∥MK∥NH∥CD, ∴ ∴ =x-y

34、40°, 故的值为40°; (3)如图,设直线FK与EG交于点H,FK与AB交于点K, ∵AB∥CD, ∴ ∵ ∴ ∵ ∴ 即 ∵FK在∠DFO内, ∴ , ∵ ∴ ∴ 即 ∴ 解得 . 经检验,符合题意, 故答案为:. 【点睛】 本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键. 二十四、解答题 24.(1)15°;150°;(2)67.5°;(3)30°或90°或120° 【分析】 (1)根据平行线的性质和三角板的角的度数解答即可; (2)根据平行线的性质和角平分线的定义解答即可; (3)分当B

35、 解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120° 【分析】 (1)根据平行线的性质和三角板的角的度数解答即可; (2)根据平行线的性质和角平分线的定义解答即可; (3)分当BC∥DE时,当BC∥EF时,当BC∥DF时,三种情况进行解答即可. 【详解】 解:(1)作EI∥PQ,如图, ∵PQ∥MN, 则PQ∥EI∥MN, ∴∠α=∠DEI,∠IEA=∠BAC, ∴∠DEA=∠α+∠BAC, ∴α= DEA -∠BAC=60°-45°=15°, ∵E、C、A三点共线, ∴∠β=180°-∠DFE=180°-30°=150°; 故答案为

36、15°;150°; (2)∵PQ∥MN, ∴∠GEF=∠CAB=45°, ∴∠FGQ=45°+30°=75°, ∵GH,FH分别平分∠FGQ和∠GFA, ∴∠FGH=37.5°,∠GFH=75°, ∴∠FHG=180°-37.5°-75°=67.5°; (3)当BC∥DE时,如图1, ∵∠D=∠C=90, ∴AC∥DF, ∴∠CAE=∠DFE=30°, ∴∠BAM+∠BAC=∠MAE+∠CAE, ∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°; 当BC∥EF时,如图2, 此时∠BAE=∠ABC=45°, ∴∠BAM=∠BAE+∠E

37、AM=45°+45°=90°; 当BC∥DF时,如图3, 此时,AC∥DE,∠CAN=∠DEG=15°, ∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°. 综上所述,∠BAM的度数为30°或90°或120°. 【点睛】 本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点. 二十五、解答题 25.(1)30°,70°,20°;(2)15°,5°,0°,5°;(

38、3)当时,;当时,. 【分析】 (1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数; 解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,. 【分析】 (1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数; (2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案; (3)按照(2)的方法,将相应的数换成字母即可得出答案. 【详解】 (1)∵,, ∴ . ∵平分, ∴.

39、 ∵是高, , , , . (2)当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , . (3)当 时,即时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 当 时,即时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 综上所述,当时,;当时,. 【点睛】 本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服