1、人教版七7年级下册数学期末质量检测及解析一、选择题1如图,下面结论正确的是( )A和是同位角B和是内错角C和是同旁内角D和是内错角2下列现象中是平移的是( )A将一张纸对折B电梯的上下移动C摩天轮的运动D翻开书的封面3点(4,2)所在的象限是()A第一象限B第二象限C第三象限D第四象限4下列句子中,属于命题的是( )三角形的内角和等于180度;对顶角相等;过一点作已知直线的垂线;两点确定一条直线ABCD5如图,直线,点E,F分别在直线AB和直线CD上,点P在两条平行线之间,和的角平分线交于点H,已知,则的度数为( )ABCD6下列说法错误的是( )A-8的立方根是-2BC的相反数是D3的平方根
2、是7一副直角三角尺如图摆放,点D在BC的延长线上,点E在AC上,EFBC,BEDF90,A30,F45,则CED的度数是()A10B15C20D258在直角坐标系中,一个质点从出发沿图中路线依次经过,按此规律一直运动下去,则( )A1009B1010C1011D1012九、填空题9若=0,则=_ .十、填空题10在平面直角坐标系中,点P(-2,3)关于直线y=x-1对称的点的坐标是_十一、填空题11如图,ADBC,ABC的角平分线BP与BAD的角平分线AP相交于点P,作PEAB于点E若PE2,则两平行线AD与BC间的距离为_十二、填空题12如图,BC,AD,有下列结论:ABCD;AEDF;AE
3、BC;AMCBND其中正确的有_(只填序号)十三、填空题13如图1是长方形纸带,将纸带沿折叠成图2,再沿折叠成图3,则图3中的的度数是_度十四、填空题14定义一种新运算“”规则如下:对于两个有理数,若,则_十五、填空题15已知点,轴,则点C的坐标是_ 十六、填空题16如图,在平面直角坐标系中,轴,轴,点、在轴上,把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标是_十七、解答题17计算:(1)利用平方根意义求x值: (2)十八、解答题18求下列各式中的值:(1);(2);(3)十九、解答题19补全下
4、列推理过程:如图,已知EF/AD,12,BAC70,求AGD解:EF/AD2 ( )又12( )13( )AB/ ( )BAC+ 180( )BAC70AGD 二十、解答题20已知:如图,ABC的位置如图所示:(每个方格都是边长为个单位长度的正方形,ABC的顶点都在格点上),点A,B,C的坐标分别为(1,0),(5,0),(1,5)(1)请在图中画出坐标轴,建立直角坐标系;(2)点P(m,n)是ABC内部一点,平移ABC,点P随ABC一起平移,点A落在A(0,4),点P落在P(n,6),求点P的坐标并直接写出平移过程中线段PC扫过的面积二十一、解答题21已知某正数的两个不同的平方根是和;的立方
5、根为;是的整数部分求的平方根二十二、解答题22张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2他不知能否裁得出来,正在发愁李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?二十三、解答题23已知点C在射线OA上(1)如图,CDOE,若AOB90,OCD120,求BOE的度数;(2)在中,将射线OE沿射线OB平移得OE(如图),若AOB,探究OCD与BOE的关系(用含的代数式表示)(3)在中,过点O作OB的垂线,与OCD的平分线交于点P(如图),若CP
6、O90,探究AOB与BOE的关系二十四、解答题24如图,以直角三角形的直角顶点为原点,以、所在直线为轴和轴建立平面直角坐标系,点,满足(1)点的坐标为_;点的坐标为_(2)如图1,已知坐标轴上有两动点、同时出发,点从点出发沿轴负方向以1个单位长度每秒的速度匀速移动,点从点出发以2个单位长度每秒的速度沿轴正方向移动,点到达点整个运动随之结束的中点的坐标是,设运动时间为问:是否存在这样的,使?若存在,请求出的值:若不存在,请说明理由(3)如图2,过作,作交于点,点是线段上一动点,连交于点,当点在线段上运动的过程中,的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由二十五、解答题25(1)
7、如图1所示,ABC中,ACB的角平分线CF与EAC的角平分线AD的反向延长线交于点F;若B90则F ;若Ba,求F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,AGB与GAB的角平分线交于点H,随着点G的运动,F+H的值是否变化?若变化,请说明理由;若不变,请求出其值【参考答案】一、选择题1D解析:D【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;
8、同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角作答【详解】解:A、由同位角的概念可知,1与2不是同位角,故A选项错误;B、由内错角的概念可知,2与3不是内错角,故B选项错误;C、 和 是对顶角,故C错误;D、由内错角的概念可知,1与4是内错角,故D选项正确故选:D【点睛】本题考查了同位角、内错角、同旁内角的概念;解题的关键是理解三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,
9、而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形2B【分析】根据平移的概念,依次判断即可得到答案;【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:A、将一张纸对折,不符合平移定解析:B【分析】根据平移的概念,依次判断即可得到答案;【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:A、将一张纸对折,不符合平移定义,故本选项错误;B、电梯的上下移动,符合平移的定义,故本选项正确;C、摩天轮的运动,不
10、符合平移定义,故本选项错误;D、翻开的封面,不符合平移的定义,故本选项错误故选B【点睛】本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移3B【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答【详解】解:点(-4,2)所在的象限是第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】根据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可【详解
11、】解: 三角形的内角和等于180,是三角形内角和定理,是命题;对顶角相等,是对顶角的性质,是命题;过一点作已知直线的垂线,是作图,不是命题;两点确定一条直线,是直线的性质,是命题,综上所述,属于命题是故选:B【点睛】此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断5D【分析】过点P作PQAB,过点H作HGAB,根据平行线的性质得到EPF=BEP+DFP=78,结合角平分线的定义得到AEH+CFH,同理可得EHF=AEH+CFH【详解】解:过点P作PQAB,过点H作HGAB, ,则PQCD,HGCD,BEP=QPE,DFP=QPF,EPF=QPE+QPF=78,BEP+DFP=
12、78,AEP+CFP=360-78=282,EH平分AEP,HF平分CFP,AEH+CFH=2822=141,同理可得:EHF=AEH+CFH=141,故选D【点睛】本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论6B【分析】根据平方根以及立方根的概念进行判断即可【详解】A、-8的立方根为-2,这个说法正确;B、|1-|=-1,这个说法错误;C-的相反数是,这个说法正确;D、3的平方根是,这个说法正确;故选B【点睛】本题主要考查了平方根与立方根,一个数的立方根只有一个,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根
13、7B【分析】由B=EDF=90,A=30,F=45,利用三角形内角和定理可得出ACB=60,DEF=45,由EFBC,利用“两直线平行,内错角相等”可得出CEF的度数,结合CED=CEF-DEF,即可求出CED的度数,此题得解【详解】解:B=90,A=30,ACB=60EDF=90,F=45,DEF=45EFBC,CEF=ACB=60,CED=CEF-DEF=60-45=15故选:B【点睛】本题考查了三角形内角和定理以及平行线的性质,牢记平行线的性质是解题的关键8B【分析】根据题意可得A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6),则,由此可知当n为偶
14、数时;,可得 ,可以得到,由此求解即可解析:B【分析】根据题意可得A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6),则,由此可知当n为偶数时;,可得 ,可以得到,由此求解即可【详解】解:由题意可知A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6),由此可知当n为偶数时 ,可得 ,可以得到,故选B【点睛】本题主要考查了点坐标规律的探索,解题的关键在于能够准确找到相应的规律进行求解九、填空题99【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n2=0,解得:m=3,n=2,则=9.考点:非负数的性
15、质.解析:9【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n2=0,解得:m=3,n=2,则=9.考点:非负数的性质.十、填空题10【分析】如图,设点P关于直线y=x1的对称点是点Q,过点P作PAx轴交直线y=x1于点A,连接AQ,先由直线y=x1与两坐标轴的交点坐标确定OBC是等腰直角三角形,然后根据平行线的性质解析:【分析】如图,设点P关于直线y=x1的对称点是点Q,过点P作PAx轴交直线y=x1于点A,连接AQ,先由直线y=x1与两坐标轴的交点坐标确定OBC是等腰直角三角形,然后根据平行线的性质和轴对称的性质可得AP=AQ,PAQ=90,由于点P坐标已知,故可求
16、出点A的坐标,进而可求出点Q坐标【详解】解:如图,设点P关于直线y=x1的对称点是点Q,过点P作PAx轴交直线y=x1于点A,连接AQ,设直线y=x1交x轴于点B,交y轴于点C,则点B(1,0)、点C(0,1),OB=OC=1,OBC=45,PAB=45,P、Q关于直线y=x1对称,AP=AQ,PAB=QAB=45,PAQ=90,AQx轴,P(2,3),且当y=3时,3=x1,解得x=4,A(4,3),AD=3,PA=6=AQ,DQ=3,点Q的坐标是(4,3)故答案为:(4,3)【点睛】本题以平面直角坐标系为载体,考查了直线上点的坐标特点、轴对称的性质、等腰直角三角形的性质等知识,熟练掌握一次
17、函数图象上点的坐标特点和轴对称的性质是解题关键十一、填空题114【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案【详解】解:过点P作MNAD,ADBC,ABC的角平分线BP与BAD的角平分线A解析:4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案【详解】解:过点P作MNAD,ADBC,ABC的角平分线BP与BAD的角平分线AP相交于点P,PEAB于点E,APBP,PNBC,PM=PE=2,PE=PN=2,MN=2+2=4故答案为4十二、填空题12【分析】根据平行线的判定与性质分析判断各项正确与否即可【
18、详解】解:BC,ABCD,AAEC,又AD,AECD,AEDF,AMC解析:【分析】根据平行线的判定与性质分析判断各项正确与否即可【详解】解:BC,ABCD,AAEC,又AD,AECD,AEDF,AMCFNM,又BNDFNM,AMCBND,故正确,由条件不能得出AMC90,故不一定正确;故答案为:【点睛】本题考查了对顶角的性质及平行线的判定与性质,难度一般十三、填空题13123【分析】由题意根据折叠的性质可得DEF=EFB=19,图2中根据平行线的性质可得GFC=142,图3中根据角的和差关系可得CFE=GFC-EFG【详解】解:AD/解析:123【分析】由题意根据折叠的性质可得DEF=EFB
19、=19,图2中根据平行线的性质可得GFC=142,图3中根据角的和差关系可得CFE=GFC-EFG【详解】解:AD/BC,DEF=EFB=19,在图2中,GFC=180-FGD=180-2EFG=142,在图3中,CFE=GFC-EFG=123故答案为:123【点睛】本题考查平行线的性质,图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变十四、填空题14【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答【详解】解:由题意得:(5x-x)(2)=1,-2(5x-x)-(-2)=-1,-8x+2=-1,解之得解析:
20、【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答【详解】解:由题意得:(5x-x)(2)=1,-2(5x-x)-(-2)=-1,-8x+2=-1,解之得:,故答案为【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 十五、填空题15(6,2)或(4,2)【分析】根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解【详解】点A(1,2),ACx轴,解析:(6,2)或(4,2)【分析】根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左
21、边与右边两种情况讨论求出点C的横坐标,从而得解【详解】点A(1,2),ACx轴,点C的纵坐标为2,AC=5,点C在点A的左边时横坐标为1-5=-4,此时,点C的坐标为(-4,2),点C在点A的右边时横坐标为1+5=6,此时,点C的坐标为(6,2)综上所述,则点C的坐标是(6,2)或(-4,2)故答案为(6,2)或(-4,2)【点睛】本题考查了点的坐标,熟记平行于x轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论十六、填空题16(1,0)【分析】先求出凸形ABCDEFGHP的周长为20,得到201820的余数为18,由此即可解决问题【详解】解:A(1,2),B(-1,2),D(-3,0
22、),E(-3,-2),G解析:(1,0)【分析】先求出凸形ABCDEFGHP的周长为20,得到201820的余数为18,由此即可解决问题【详解】解:A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),“凸”形ABCDEFGHP的周长为20,201820的余数为18,细线另一端所在位置的点在P处,坐标为(1,0)故答案为:(1,0)【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型十七、解答题17(1)或 (2)【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案【详解】解:(1)
23、 ,是的平方根, 或 (2) 【点睛解析:(1)或 (2)【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案【详解】解:(1) ,是的平方根, 或 (2) 【点睛】本题考查的是平方根的定义,实数的运算,求解算术平方根,立方根,绝对值的化简,掌握以上知识是解题的关键十八、解答题18(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出解析:(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案
24、;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出x的值【详解】解:(1)x3=0.008,则x=0.2;(2)x3-3= 则x3=3+故x3=解得:x=;(3)(x-1)3=64则x-1=4,解得:x=5【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键十九、解答题193;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;AGD;两直线平行,同旁内角互补;110【分析】根据平行线的性质得出23,求出13,根据平行线的判定得解析:3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行
25、;AGD;两直线平行,同旁内角互补;110【分析】根据平行线的性质得出23,求出13,根据平行线的判定得出AB/DG,根据平行线的性质推出BAC+AGD180,代入求出即可求得AGD【详解】解:EF/AD,23(两直线平行,同位角相等),又12(已知),13(等量代换),AB/DG,(内错角相等,两直线平行)BAC+AGD180,(两直线平行,同旁内角互补)BAC70,AGD110故答案为:3,两直线平行,同位角相等,已知,等量代换,DG,内错角相等,两直线平行,AGD,两直线平行,同旁内角互补;110【点睛】本题考查了平行线的性质和判定的应用,能正确根据平行线的性质和判定定理进行推理是解此题
26、的关键二十、解答题20(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性质解析:(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性质可求得线段PC扫过的面积【详解】解:(1)平面直角坐标系如图所示:(2)因为点A(1,0)落在A(0,4),同时点P(m,n)落在P(n,6),解得,点P的坐标为(1,2);如图,线段PC扫过
27、的面积即为平行四边形PCCP的面积,线段PC扫过的面积为【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型二十一、解答题21【分析】由平方根的含义求解 由立方根的含义求解 由整数部分的含义求解 从而可得答案.【详解】解:某正数的两个平方根分别是和, 又的立方根为,又是的整数部分,;当,时,解析:【分析】由平方根的含义求解 由立方根的含义求解 由整数部分的含义求解 从而可得答案.【详解】解:某正数的两个平方根分别是和, 又的立方根为,又是的整数部分,;当,时,的平方根是【点睛】本题考查的是平方根,立方根的含义,无理数的估算,整数部分的含义,掌握以
28、上知识是解题的关键.二十二、解答题22不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于解析:不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2试题解析:解:不同意李明的说法设长方形纸片的长为
29、3x (x0)cm,则宽为2x cm,依题意得:3x2x=300,6x2=300,x2=50,x0,x=,长方形纸片的长为 cm,5049,7,21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,长方形纸片的长大于正方形纸片的边长答:李明不能用这块纸片裁出符合要求的长方形纸片点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0也考查了估算无理数的大小二十三、解答题23(1)150;(2)OCD+BOE=360-;(3)AOB=BOE【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得
30、BOE的度数;(2)解析:(1)150;(2)OCD+BOE=360-;(3)AOB=BOE【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得BOE的度数;(2)如图,过O点作OFCD,根据平行线的判定和性质可得OCD、BOE的数量关系;(3)由已知推出CPOB,得到AOB+PCO=180,结合角平分线的定义可推出OCD=2PCO=360-2AOB,根据(2)OCD+BOE=360-AOB,进而推出AOB=BOE【详解】解:(1)CDOE,AOE=OCD=120,BOE=360-AOE-AOB=360-90-120=150;(2)OCD+BOE=360-证明:如图
31、,过O点作OFCD,CDOE,OFOE,AOF=180-OCD,BOF=EOO=180-BOE,AOB=AOF+BOF=180-OCD+180-BOE=360-(OCD+BOE)=,OCD+BOE=360-;(3)AOB=BOE证明:CPO=90,POCP,POOB,CPOB,PCO+AOB=180,2PCO=360-2AOB,CP是OCD的平分线,OCD=2PCO=360-2AOB,由(2)知,OCD+BOE=360-=360-AOB,360-2AOB+BOE=360-AOB,AOB=BOE【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题
32、的关键二十四、解答题24(1),;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案; (2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-解析:(1),;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案; (2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据SODP=SODQ,列出关于t的方程,求得t的值即可; (3)过H点作AC的平行线,交x轴于P,先判定OGAC,再根据角的和差关系以及平行线的性质,得出PHO=GOF=1+2
33、,OHC=OHP+PHC=GOF+4=1+2+4,最后代入进行计算即可【详解】解:(1)+|b-2|=0, a-2b=0,b-2=0, 解得a=4,b=2, A(0,4),C(2,0) (2)存在, 理由:如图1中,D(1,2), 由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,0t2时,点Q在线段AO上, 即 CP=t,OP=2-t,OQ=2t,AQ=4-2t, SDOP=OPyD=(2-t)2=2-t,SDOQ=OQxD=2t1=t, SODP=SODQ, 2-t=t, t=1 (3)结论:的值不变,其值为2理由如下:如图2中,2+3=90, 又1=2,3=FC
34、O, GOC+ACO=180, OGAC, 1=CAO, OEC=CAO+4=1+4, 如图,过H点作AC的平行线,交x轴于P,则4=PHC,PHOG, PHO=GOF=1+2, OHC=OHP+PHC=GOF+4=1+2+4, =2【点睛】本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题二十五、解答题25(1)45;Fa;(2)F+H的值不变,是定值180【分析】(1)依据AD平分CAE,CF平分ACB,可得CAD=CAE,ACF=ACB,依据CAE是ABC解析:(1)45;Fa;(2)F+H的值不变,是定值1
35、80【分析】(1)依据AD平分CAE,CF平分ACB,可得CAD=CAE,ACF=ACB,依据CAE是ABC的外角,可得B=CAE-ACB,再根据CAD是ACF的外角,即可得到F=CAD-ACF=CAE-ACB=(CAE-ACB)=B;(2)由(1)可得,F=ABC,根据角平分线的定义以及三角形内角和定理,即可得到H=90+ABG,进而得到F+H=90+CBG=180【详解】解:(1)AD平分CAE,CF平分ACB,CADCAE,ACFACB,CAE是ABC的外角,BCAEACB,CAD是ACF的外角,FCADACFCAEACB(CAEACB)B45,故答案为45;AD平分CAE,CF平分ACB,CADCAE,ACFACB,CAE是ABC的外角,BCAEACB,CAD是ACF的外角,FCADACFCAEACB(CAEACB)Ba;(2)由(1)可得,FABC,AGB与GAB的角平分线交于点H,AGHAGB,GAHGAB,H180(AGH+GAH)180(AGB+GAB)180(180ABG)90+ABG,F+HABC+90+ABG90+CBG180,F+H的值不变,是定值180【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100