1、八年级上学期压轴题数学综合检测试卷解析(一)1、已知,(1)若,作,点在内如图1,延长交于点,若,则的度数为 ;如图2,垂直平分,点在上,求的值;(2)如图3,若,点在边上,点在边上,连接,求的度数2、如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b286+160(1)求a,b的值;(2)如图1,c为y轴负半轴上一点,连CA,过点C作CDCA,使CDCA,连BD求证:CBD45;(3)如图2,若有一等腰RtBMN,BMN90,连AN,取AN中点P,连PM、PO试探究PM和PO的关系3、如图1已知点A,B分别在坐标轴上,点C(3,3),CABA于点A,且BACA,CA,CB
2、分别交坐标轴于D,E(1)填空:点B的坐标是 ;(2)如图2,连接DE,过点C作CHCA于C,交x轴于点H,求证:ADBCDE;(3)如图3,点F(6,0),点P在第一象限,连PF,过P作PMPF交y轴于点M,在PM上截取PNPF,连PO,过P作OPG45交BN于G求证:点G是BN中点4、如图1,在平面直角坐标系中,且ACB90,ACBC(1)求点B的坐标;(2)如图2,若BC交y轴于点M,AB交x轴与点N,过点B作轴于点E,作轴于点F,请探究线段MN,ME,NF的数量关系,并说明理由;(3)如图3,若在点B处有一个等腰RtBDG,且BDDG,BDG90,连接AG,点H为AG的中点,试猜想线段
3、DH与线段CH的数量关系与位置关系,并证明你的结论5、如图,在等边ABC中,ABACBC6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts(1)当t为何值时,M、N两点重合;(2)当点M、N分别在AC、BA边上运动,AMN的形状会不断发生变化当t为何值时,AMN是等边三角形;当t为何值时,AMN是直角三角形;(3)若点M、N都在BC边上运动,当存在以MN为底边的等腰AMN时,求t的值6、如图1,在平面直角坐标系中,AOAB,BAO90,BO8cm,动点D从原点O出发沿x
4、轴正方向以acm/s的速度运动,动点E也同时从原点O出发在y轴上以bcm/s的速度运动,且a,b满足关系式a2+b24a2b+50,连接OD,OE,设运动的时间为t秒(1)求a,b的值;(2)当t为何值时,BADOAE;(3)如图2,在第一象限存在点P,使AOP30,APO15,求ABP7、请按照研究问题的步骤依次完成任务【问题背景】(1)如图1的图形我们把它称为“8字形”, 请说理证明A+B=C+D 【简单应用】(2)如图2,AP、CP分别平分BAD、BCD,若ABC=20,ADC=26,求P的度数(可直接使用问题(1)中的结论) 【问题探究】(3)如图3,直线AP平分BAD的外角FAD,C
5、P平分BCD的外角BCE, 若ABC=36,ADC=16,猜想P的度数为 ;【拓展延伸】(4)在图4中,若设C=x,B=y,CAP=CAB,CDP=CDB,试问P与C、B之间的数量关系为 (用x、y表示P) ;(5)在图5中,AP平分BAD,CP平分BCD的外角BCE,猜想P与B、D的关系,直接写出结论 8、如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接(1)如图,当点D移动到线段的中点时,与的长度关系是:_(2)如图,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论(3)如图,当点D
6、移动到线段的延长线上,并且时,求的度数【参考答案】1、(1)15;(2)【分析】(1)根据等腰直角三角形的性质,连接,得,所对的直角边是斜边的一半,可得,所以可得,和是等腰三角形,由外角性质计算可得;构造“一线三垂直”模型,证明三【解析】(1)15;(2)【分析】(1)根据等腰直角三角形的性质,连接,得,所对的直角边是斜边的一半,可得,所以可得,和是等腰三角形,由外角性质计算可得;构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得(2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得【详解】(1)连接,在,因为,故答案为:过作交延长线于
7、,连接垂直平分,故答案为:;(2)以AB向下构造等边,连接DK,延长AD,BK交于点T,等边中,在和中,等边三角形三线合一可知,BD是边AK的垂直平分线,故答案为: 【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据2、(1)a4,b4;(2)见解析;(3)MPOP,MPOP,理由见解析【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可;【解析】(1)a4,b4;(2)见解析;(3)MPOP,MPO
8、P,理由见解析【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可;(2)如图1(见解析),作于E易证,由三角形全等的性质得,再证明是等腰直角三角形即可;(3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C证出和,再利用全等三角形的性质证明是等腰直角三角形即可.【详解】(1)由绝对值的非负性和平方数的非负性得:解得:;(2)如图1,作于E是等腰直角三角形,;(3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C在四边形MCOB中,是等腰直角三角形是等腰直角三角形.【点睛】本题考查
9、了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键.3、(1)(0,6)(2)见解析(3)见解析【分析】(1)作CMx轴于M,求出CM= CN= 2,证明BAOACM,推出AO= CM= 2,OB=AM=4,即可得出答案;(2)在BD上截【解析】(1)(0,6)(2)见解析(3)见解析【分析】(1)作CMx轴于M,求出CM= CN= 2,证明BAOACM,推出AO= CM= 2,OB=AM=4,即可得出答案;(2)在BD上截取BF= AE,连AF,证BAFCAE,证AFDCED,即可得出答案;(3)作EOOP交PG的延长线
10、于E,连接EB、EN、PB,只要证明四边形ENPB是平行四边形就可以了(1)解:过点C作CGx轴于G,如图所示:C(3,3),CG3,OG3,BOACGA90,ABO+BAOBAO+CAG90,ABOCAG,又ABAC,ABOCAG(AAS),AOCG3,OBAGAO+OG6,点B的坐标是(0,6)(2)证明:如图,过点C作CGx轴于G,CFy轴于F,则CFAO同(1)得:ABOCAG(AAS),AOCG3,CF3,AOCF,CFAODAODCF,AODCFD,AODCFD(ASA),ADCD,CABA,CHCA,BADACH90,又ABOCAG,ABAC,BADACH(ASA),ADCH,A
11、DBAHCCDCH,BACA,ABC是等腰直角三角形,ACB45,HCE90ACB45,DCEHCE45,又CECE,DCEHCE(SAS),CDECHE,ADBCDE(3)证明:过点O作OKOP交PG延长线于K,连接BK、NF,过点P作PLNF于L则OPK是等腰直角三角形,OKPOPK45,OKOP,PNPF,PNF是等腰直角三角形,PFNPNF45,PLNF,FPL45,则OPFOPL+45,GPNOPL45MPO,KOB+BOPFOP+BOP90,KOBFOP,又OBOF6,OKBOPF(SAS),KBPFPN,OKB45+GKBOPFOPL+45,GKBOPLGPN,又KGBPGN,K
12、BGPNG(SAS),BGNG,即点G为BN的中点【点睛】本题是三角形综合题目,考查了全等三角形的判定和性质、坐标与图形性质、等腰直角三角形的判定与性质、平行线的判定与性质、直角三角形的性质等知识,本题综合性强,有一定难度,证明三角形全等是解题的关键,属于中考常考题型4、(1)(2),见解析(3)且,见解析【分析】(1)如图1中,过点C作CTy轴于点T,根点B作BHCT交CT的延长线于点H证明ATCCHB(AAS),推出ATCH6,CTBH【解析】(1)(2),见解析(3)且,见解析【分析】(1)如图1中,过点C作CTy轴于点T,根点B作BHCT交CT的延长线于点H证明ATCCHB(AAS),
13、推出ATCH6,CTBH2,可得结论;(2)结论:MNME+NF证明BFNBEK(SAS),推出BNBK,FBNEBK,再证明BMNBMK(SAS),推出MNMK,可得结论;(3)结论:DHCH,DHCH如图3中,延长DH到J,使得HJDH,连接AJ,CJ,延长DG交AC于点M证明JDC是等腰直角三角形,可得结论【详解】解:(1)如图1中,过点C作CTy轴于点T,根点B作BHCT交CT的延长线于点HA(0,4),C(2,2),OA4,OTCT2,AT4+26,ACBATCH90,CAT+ACT90,BCH+CBH90,CATBCH,CACB,ATCCHB(AAS),ATCH6,CTBH2,TH
14、CHCT4,B(4,-4);(2)结论:MNME+NF理由:在射线OE上截取EKFN,连接BKB(4,4),BEy轴,BFx轴,BEBF4,BEOBFOEOF90,四边形BEOF是矩形,EBF90,EKFN,BFNBEK90,BFNBEK(SAS),BNBK,FBNEBK,NBKFBE90,MBN45,MBNBMK45,BMBM,BMNBMK(SAS),MNMK,MKME+EK,MNEM+FN;(3)结论:DHCH,DHCH理由:如图3中,延长DH到J,使得HJDH,连接AJ,CJ,延长DG交AC于点MAHHG,AHJGHD,HJHD,AHJGHD(SAS),AJDG,AJHDGH,AJDM,
15、JACAMD,DGBD,AJBD,MCBBDM90,CBD+CMD180,AMD+CMD180,AMDCBD,CAJCBD,CACB,CAJCBD(SAS),CJCD,ACJBCD,JCDACB90,JHHD,CHDJ,CHJHHD,即CHDH,CHDH【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题5、(1)当M、N运动6秒时,点N追上点M;(2),AMN是等边三角形;当或时,AMN是直角三角形;(3)【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路
16、程,N的运【解析】(1)当M、N运动6秒时,点N追上点M;(2),AMN是等边三角形;当或时,AMN是直角三角形;(3)【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多6cm,列出方程求解即可;(2)根据题意设点M、N运动t秒后,可得到等边三角形AMN,然后表示出AM,AN的长,由于A等于60,所以只要AMAN三角形ANM就是等边三角形;分别就AMN90和ANM90列方程求解可得;(3)首先假设AMN是等腰三角形,可证出ACMABN,可得CMBN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值【解答】解:(1)设
17、点M、N运动x秒后,M、N两点重合,x1+62x,解得:x6,即当M、N运动6秒时,点N追上点M;(2)设点M、N运动t秒后,可得到等边三角形AMN,如图1,AMt,AN62t,ABACBC6cm,A60,当AMAN时,AMN是等边三角形,t62t,解得t2,点M、N运动2秒后,可得到等边三角形AMN当点N在AB上运动时,如图2,若AMN90,BN2t,AMt,AN62t,A60,2AMAN,即2t62t,解得;如图3,若ANM90,由2ANAM得2(62t)t,解得综上所述,当t为或时,AMN是直角三角形;(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知6秒时M
18、、N两点重合,恰好在C处,如图4,假设AMN是等腰三角形,ANAM,AMNANM,AMCANB,ABBCAC,ACB是等边三角形,CB,在ACM和ABN中,AMCANB,CB,ACAB,ACMABN(AAS),CMBN,t6182t,解得t8,符合题意所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形【点睛】本题是三角形综合题,主要考查了等边三角形的判定与性质,含30角的直角三角形的性质,全等三角形的判定与性质,将动点问题转化为线段的长是解题的关键6、(1)a2,b1;(2)t或t8;(3)ABP105【分析】(1)将a2+b24a2b+50用配方法得出(a2)2+(b1)20,利
19、用非负数的性质,即可得出结论;(2【解析】(1)a2,b1;(2)t或t8;(3)ABP105【分析】(1)将a2+b24a2b+50用配方法得出(a2)2+(b1)20,利用非负数的性质,即可得出结论;(2)先由运动得出BD|82t|,再由全等三角形的性质的出货BDOE,建立方程求解即可得出结论(3)先判断出OAPBAQ(SAS),得出OPBQ,ABQAOP30,AQBAPO15,再求出OAP135,进而判断出OAQBAQ(SAS),得出OQABQA15,OQBQ,再判断出OPQ是等边三角形,得出OQP60,进而求出BQP30,再求出PBQ75,即可得出结论【详解】解:(1)a2+b24a2
20、b+50,(a2)2+(b1)20,a20,b10,a2,b1;(2)由(1)知,a2,b1,由运动知,OD2t,OEt,OB8,DB|82t|BADOAE,DBOE,|82t|t,解得,t(如图1)或t8(如图2);(3)如图3,过点A作AQAP,使AQAP,连接OQ,BQ,PQ,则APQ45,PAQ90,OAB90,PAQOAB,OAB+BAPPAQ+BAP,即:OAPBAQ,OAAB,ADAD,OAPBAQ(SAS),OPBQ,ABQAOP30,AQBAPO15,在AOP中,AOP30,APO15,OAP180AOPAPO135,OAQ360OAPPAQ13590135OAP,OAAB,
21、ADAD,OAQBAQ(SAS),OQABQA15,OQBQ,OPBQ,OQOP,APQ45,APO15,OPQAPO+APQ60,OPQ是等边三角形,OQP60,BQPOQPOQABQA60151530,BQPQ,PBQ(180BQP)75,ABPABQ+PBQ30+75105【点睛】本题是三角形综合题,主要考查了配方法、非负数的性质、三角形内角和定理、等边三角形的判定和性质、全等三角形的判定及性质,构造出全等三角形是解题的关键7、(1)见解析;(2)P=23;(3)P=26;(4)P=;(5)P=【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到1=2,3=4
22、,列方程组【解析】(1)见解析;(2)P=23;(3)P=26;(4)P=;(5)P=【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到1=2,3=4,列方程组即可得到结论;(3)由AP平分BAD的外角FAD,CP平分BCD的外角BCE,推出1=2,3=4,推出PAD=180-2,PCD=180-3,由P+(180-1)=D+(180-3),P+1=B+4,推出2P=B+D,即可解决问题;(4)根据题意得出B+CAB=C+BDC,再结合CAP=CAB,CDP=CDB,得到y+(CAB-CAB)=P+(BDC-CDB),从而可得P=y+CAB-CAB-CDB+CDB
23、=;(5)根据题意得出B+BAD=D+BCD,DAP+P=PCD+D,再结合AP平分BAD,CP平分BCD的外角BCE,得到BAD+P=BCD+(180-BCD)+D,所以P=90+BCD-BAD +D=.【详解】解:(1)证明:在AOB中,A+B+AOB=180,在COD中,C+D+COD=180,AOB=COD,A+B=C+D;(2)解:如图2,AP、CP分别平分BAD,BCD,1=2,3=4,由(1)的结论得:,+,得2P+2+3=1+4+B+D,P=(B+D)=23;(3)解:如图3,AP平分BAD的外角FAD,CP平分BCD的外角BCE,1=2,3=4,PAD=180-2,PCD=1
24、80-3,P+(180-1)=D+(180-3),P+1=B+4,2P=B+D,P=(B+D)=(36+16)=26;故答案为:26;(4)由题意可得:B+CAB=C+BDC,即y+CAB=x+BDC,即CAB-BDC=x-y,B+BAP=P+PDB,即y+BAP=P+PDB,即y+(CAB-CAP)=P+(BDC-CDP),即y+(CAB-CAB)=P+(BDC-CDB),P=y+CAB-CAB-CDB+CDB= y+(CAB-CDB)=y+(x-y)=故答案为:P=;(5)由题意可得:B+BAD=D+BCD,DAP+P=PCD+D,B-D=BCD-BAD,AP平分BAD,CP平分BCD的外
25、角BCE,BAP=DAP,PCE=PCB,BAD+P=(BCD+BCE)+D,BAD+P=BCD+(180-BCD)+D,P=90+BCD-BAD +D=90+(BCD-BAD)+D=90+(B-D)+D=,故答案为:P=.【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型8、(1)(2),证明见详解(3)【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边【解析】(1)(2),证明见详解(3)【分析】(1)由
26、题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明;(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,如图(见详解),用同样的方法证明,再根据EDDC,证出为等腰直角三角形,即可求出DEC的度数(1)解:,证明过程如下:由题意可知, D为AB的中点,为等边三角形,(2)解:,理由如下:在射线AB上截取,连接EF,如图所示,为等边三角形,为等边三角形,由题意知,即,在和中,DE与DC之间的数量关系是(3)如图,在射线CB上截取,连接DF,如图所示,为等边三角形,为等边三角形,由题意知,即,在和中,EDDC,为等腰直角三角形,【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100