ImageVerifierCode 换一换
格式:PPT , 页数:32 ,大小:437KB ,
资源ID:1717067      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1717067.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(轮复习数列求和专题.ppt)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

轮复习数列求和专题.ppt

1、数列的求和1.一.公式法:等差数列的前n项和公式:等比数列的前n项和公式 3.2+4+6+2n=;1+3+5+(2n-1)=;n2+n n2 4.例2 求和:1+(1/a)+(1/a2)+(1/an)5.2.分组求和法:若数列 的通项可转化为 的形式,且数列 可求出前n项和 例3.求下列数列的前n项和(1)6.解(1):该数列的通项公式为 7.错位相减法:如果一个数列的各项是由一个等差数列与一个等比数列对应项乘积组成,此时求和可采用错位相减法.既an nbn n型等差等比8.例4、求和Sn=1+2x+3x2+nxn-1 (x0,1)分析这是一个等差数列n与一个等比数列xn-1的对应相乘构成的新

2、数列,这样的数列求和该如何求呢?Sn=1+2x+3x2+nxn-1 xSn=x+2x2+(n-1)xn-1+nxn(1-x)Sn=1+x+x2+xn-1 -nxn n项这时等式的右边是一个等比数列的前n项和与一个式子的和,这样我们就可以化简求值。错位相减法9.例4、求和Sn=1+2x+3x2+nxn-1 (x0,1)解:Sn=1+2x+3x2+nxn-1xSn=x+2x2+(n-1)xn-1+nxn -,得:(1-x)Sn=1+x+x2+xn-1-nxn 1-(1+n)xn+nxn+11-x=Sn=1-(1+n)xn+nxn+1(1-x)2 1-xn1-x=-nxn10.练习:求和Sn=1/2

3、+3/4+5/8+(2n-1)/2n11.求和Sn=1/2+3/4+5/8+(2n-1)/2n12.2.设数列 满足a13a232a33n1an ,aN*.(1)求数列 的通项;(2)设bn ,求数列 的前n项和Sn.变式探究13.2设数列 满足a13a232a33n1an ,aN*.(1)求数列 的通项;(2)设bn ,求数列 的前n项和Sn.解析:(1)a13a232a33n1an ,14.(2)bnn3n,Sn13232333n3n,3Sn132233334(n1)3nn3n1两式相减,得2Sn332333nn3n1,15.列项求和法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆

4、成两项之差,在求和时一些正负项相互抵消,于是前n n项的和变成首尾若干少数项之和,这一求和方法称为分裂通项法.(见到分式型的要往这种方法联想)16.常见的拆项公式有:17.常见的裂项公式有:7nn!=(n+1)!-n!;8918.例5、Sn=+1131351(2n-1)(2n+1)分析:观察数列的前几项:1(2n-1)(2n+1)=(-)21 2n-11 2n+11这时我们就能把数列的每一项裂成两项再求和,这种方法叫什么呢?拆项相消法113=(-213111)19.例5、Sn=+1131351(2n-1)(2n+1)解:由通项an=1(2n-1)(2n+1)=(-)21 2n-11 2n+11

5、Sn=(-+-+-)2131115131 2n-11 2n+11=(1 -)21 2n+11 2n+1n=评:裂项相消法的关键就是将数列的每一项拆成二项或多项使数列中的项出现有规律的抵消项,进而达到求和的目的。20.【分析分析】所给数列为倒数构成的数列,故应研究通项,看能否拆为两项之差的形式,以便使用裂项相消法.【解析解析】求数列 ,的前n项和.变式探究:21.设数列an的前n项和为Sn,点(n,)(n N*)均在函数y=3x-2的图象上.(1)求数列an的通项公式;(2),Tn是数列bn的前n项和,求使得Tn 对所有n N*都成立的最小正整数m.例4.22.(1)依题意得 =3n-2,即Sn

6、=3n2-2n.当n2时,an=Sn-Sn-1=(3n2-2n)-3(n-1)2-2(n-1)=6n-5;当n=1时,a1=S1=312-21=1=61-5,an=6n-5(n N*).23.(2)由(1)得bn=故Tn=b1+b2+bn 因此,使得 (n N*)成立的m必须满足 ,即m10.故满足要求的最小正整数m为=an+bn(an、bn为等差或等比数列。)项的特征反思与小结:要善于从通项公式中看本质:一个等差 n n 一个等比22n n ,另外要特别观察通项公式,如果通项公式没给出,则有时我们需求出通项公式,这样才能找规律解题.分组求和法25.,+n 1练习1.求数列 +2 3 ,+的前

7、n项和。,2 2 2 ,3 2 n 2 +1 2 3 n 解:=(1+2+3+n)Sn=(1+2)+(2+)+(3+)+(+)2 2 3 2 2 +(2+2 +2 +2 )n23=n(n+1)22(2 -1)2-1n+=n(n+1)2+2 -2n+1分组求和法26.例6 6:1-21-22 2+3+32 2-4-42 2+(2n-1)+(2n-1)2 2-(2n)-(2n)2 2=?局部重组转化为常见数列并项求和28.练习:已知S Sn n=-1+3-5+7+=-1+3-5+7+(-1)+(-1)n n(2n-1),(2n-1),1)1)求S S2020,S,S21212)2)求S Sn nS2020=-1+3+(-5)+7+(-37)+39S2121=-1+3+(-5)+7+(-9)+39+(-41)=20=20=-2129.例7 7:已知数列5 5,5555,555555,55555555,求满足前4 4项条件的数列的通项公式及前n n项和公式。练习:求和S Sn n=1+(1+2)+(1+2+2=1+(1+2)+(1+2+22 2)+(1+2+2)+(1+2+22 2+2+23 3)+)+(+(1+2+21+2+22 2+2+2n-1n-1)通项分析求和通项=2n n-1-130.先求通项再处理通项31.32.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服