ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:468KB ,
资源ID:1700491      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1700491.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(第4章交通工程学交通流理论习题解答.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

第4章交通工程学交通流理论习题解答.doc

1、交通工程学 第四章 交通流理论习题解答4-1 在交通流模型中,假定流速 V 与密度 k 之间的关系式为 V = a (1 - bk)2,试依据两个边界条件,确定系数 a、b 的值,并导出速度与流量以及流量与密度的关系式。解答:当V = 0时, ;当K0时, ;把a和b代入到V = a (1 - bk)2 , 又 流量与速度的关系流量与密度的关系 4-2 已知某公路上中畅行速度Vf = 82 km/h,阻塞密度Kj = 105 辆/km,速度与密度用线性关系模型,求: (1)在该路段上期望得到的最大流量; (2)此时所对应的车速是多少?解答:(1)VK线性关系,Vf = 82km/h,Kj =

2、105辆/km Vm = Vf /2= 41km/h,Km = Kj /2= 52.5辆/km, Qm = Vm Km = 2152.5辆/h(2)Vm = 41km/h4-3 对通过一条公路隧道的车速与车流量进行了观测,发现车流密度和速度之间的关系具有如下形式:式中车速以 km/h计;密度 k 以 /km 计,试问在该路上的拥塞密度是多少?解答:拥塞密度Kj为V = 0时的密度, Kj = 180辆/km4-5 某交通流属泊松分布,已知交通量为1200辆/h,求: (1)车头时距 t 5s 的概率; (2)车头时距 t 5s 所出现的次数; (3)车头时距 t 5s 车头间隔的平均值。解答:

3、车辆到达符合泊松分布,则车头时距符合负指数分布,Q = 1200辆/h(1)(2)n = = 226辆/h(3)4-6 已知某公路 q=720辆/h,试求某断面2s时间段内完全没有车辆通过的概率及其 出现次数。解答:(1)q = 720辆/h,t = 2sn = 0.67720 = 483辆/h4-7 有优先通行权的主干道车流量N360辆/ h,车辆到达服从泊松分布,主要道路允许次要道路穿越的最小车头时距=10s,求(1) 每小时有多少个可穿空档? (2) 若次要道路饱和车流的平均车头时距为t0=5s,则该路口次要道路车流穿越主要道路车流的最大车流为多少? 解答:(1) 如果到达车辆数服从泊松

4、分布,那么,车头时距服从负指数分布。 根据车头时距不低于t的概率公式,可以计算车头时距不低于10s的概率是 主要道路在1小时内有360辆车通过,则每小时内有360个车头时距,而在360个车头时距中,不低于可穿越最小车头时距的个数是(总量发生概率)3600.3679=132(个)因此,在主要道路的车流中,每小时有132个可穿越空挡。 (2) 次要道路通行能力不会超过主要道路的通行能力,是主要道路通行能力乘以一个小于1的系数。同样,次要道路的最大车流取决于主要道路的车流的大小、主要道路车流的可穿越空挡、次要道路车流的车头时距,可记为因此,该路口次要道路车流穿越主要道路车流的最大车辆为337辆/h。

5、4-8 在非信号交叉口,次要道路上的车辆为了能横穿主要道路上的车流,车辆通过主要车流的极限车头时距是6s,次要道路饱和车流的平均车头时距是3s,若主要车流的流量为1200量/h。试求(1) 主要道路上车头时距不低于6s的概率是多少?次要道路可能通过的车辆是多少? (2) 就主要道路而言,若最小车头时距是1s,则已知车头时距大于6s的概率是多少?而在该情况下次要道路可能通过多少车辆?解答:(1) 计算在一般情况下主要道路上某种车头时距的发生概率、可穿越车辆数。把交通流量换算成以秒为单位的流入率,=Q/3600 =1/3 (pcu/s) 根据车头时距不低于t的概率公式,计算车头时距不低于极限车头时

6、距6s的概率,次要道路通行能力不会超过主要道路的通行能力,是主要道路通行能力乘以一个小于1的系数。同样,次要道路的最大车流取决于主要道路的车流的大小、主要道路车流的可穿越空挡、次要道路车流的车头时距,(2) 计算在附加条件下主要道路上某种车头时距的发生概率、可穿越车辆数。根据概率论中的条件概率定律的,在主要道路上最小车头时距不低于1s的情况下,车头时距不低于6s的概率是次要道路的最大车流取决于主要道路的车流的大小、主要道路车流的可穿越空挡、次要道路车流的车头时距,(2) 关于第2问还存在另外一种解答。负指数分布的特点是“小车头时距大概率”,即车头时距愈短出现的概率越大。“车头时距等于零的概率的

7、最大”这个特征违反了客观现实,因为相邻两个车头之间的距离至少不低于车身长度,也就是说车头时距必须不低于某个阈值,此时,应考虑采用移位负指数分布p(ht)exp(t)。主要道路的最小车头时距是1s,可以理解为=1s。4-9 今有 1500辆/h 的车流量通过三个服务通道引向三个收费站,每个收费站可服务600辆/h,试分别按单路排队和多路排队两种服务方式计算各相应指标。解:(1)按单路排队多通道系统(M/M/1系统)计算:, ,系统稳定,(2)按多路排队多通道系统(3个平行的M/M/1系统)计算:,系统稳定,对于由三个收费站组成的系统,4-10 流在一条6车道的公路上行驶,流量q1=4200辆/h

8、,速度v1=50km/h,遇到一座只有4车道的桥,桥上限速13km/h,对应通行能力3880辆/h。在通行持续了1.69h后,进入大桥的流量降至q3=1950辆/h,速度变成v3=59km/h,试估计囤积大桥入口处的车辆拥挤长度和拥挤持续时间?(李江例题107页、东南练习题123页习题)解答:在车辆还没有进入限速大桥之前,没有堵塞现象,在车辆进入限速大桥之后,因为通行能力下降,交通密度增大,出现交通拥堵。因此,车流经历了消散集结消散的过程,三种状态下的交通流的三个基本参数是q14200veh/h,v150km/h,k1q1 / v184veh/kmq23880veh/h,v213km/h,k2

9、q2 / v2298veh/kmq31950veh/h,v359km/h,k3q3 / v333veh/km1. 计算排队长度交通流密度波等于表明此处出现迫使排队的反向波,波速为1.50km/h,考虑到波速从0经过了1.69h增加到1.50km/h,其平均波速为va=(0+1.50)2=0.75km/h,所以此处排队长度为2. 计算阻塞时间高峰过去后,排队即开始消散,但阻塞仍要持续一段时间。因此阻塞时间应为排队形成时间与消散时间之和。 排队形成时间是1.69h,所有车辆都经历了这么长的排队时间。 排队消散时间的计算,主要根据在形成时间里的囤积量与消散时间里的消散量平衡的原则来进行。高峰过后的车流量:q3=1950辆/h 3880辆/h,表明通行能力已经富余,排队开始消散。 排队车辆是 车队消散能力 则排队消散时间 因此,交通阻塞时间排队形成时间排队消散时间1.69h0.28h = 1.97h此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好最新可编辑word文档

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服