1、 2.2 2.2 直线、平面平行的判定及其性质直线、平面平行的判定及其性质 2.2.1 2.2.1 直线与平面平行的判定直线与平面平行的判定 问题提出问题提出1.1.直线与平面的位置关系有哪几种?直线与平面的位置关系有哪几种?2.2.在直线与平面的位置关系中,在直线与平面的位置关系中,平行平行是是一种非常重要的关系,它是空间线面位一种非常重要的关系,它是空间线面位置关系的基本形态,那么怎样判定直线置关系的基本形态,那么怎样判定直线与平面平行呢?与平面平行呢?平行、相交、在平面内平行、相交、在平面内.知识探究知识探究(一一):直线与平面平行的背景分析直线与平面平行的背景分析 思考思考1 1:根据
2、定义,怎样根据定义,怎样判定直线与平面平行?图判定直线与平面平行?图中直线中直线l 和平面和平面平行吗?平行吗?l思考思考2 2:生活中,我们生活中,我们注意到门扇的两边是平注意到门扇的两边是平行的行的.当门扇绕着一边当门扇绕着一边转动时,观察门扇转动转动时,观察门扇转动的一边的一边l 与门框所在平与门框所在平面的位置关系如何?面的位置关系如何?l思考思考3 3:若将一本书平放若将一本书平放在桌面上,翻动书的封面,在桌面上,翻动书的封面,观察封面边缘所在直线观察封面边缘所在直线l与桌面所在的平面具有怎样与桌面所在的平面具有怎样的位置关系?的位置关系?思考思考4 4:有一块木料如图,有一块木料如
3、图,P P为面为面BCEFBCEF内一点,要求内一点,要求过点过点P P在平面在平面BCEFBCEF内画一内画一条直线和平面条直线和平面ABCDABCD平行,平行,那么应如何画线?那么应如何画线?lC CA AB BD DE EF FP P思考思考5 5:如图,设直线如图,设直线b b在平面在平面内,直内,直线线a a在平面在平面外,猜想在什么条件下直线外,猜想在什么条件下直线a a与平面与平面平行?平行?b ba aa/ba/b探究(二):探究(二):直线与平面平行的判断定理直线与平面平行的判断定理 思考思考1 1:如果直线如果直线a a与平面与平面内的一条直内的一条直线线b b平行,则直线
4、平行,则直线a a与平面与平面一定平行吗?一定平行吗?ab思考思考2 2:通过上述分析,我们可以得到判通过上述分析,我们可以得到判定直线与平面平行的一个定理,你能用定直线与平面平行的一个定理,你能用文字语言表述出该定理的内容吗?文字语言表述出该定理的内容吗?定理定理 若平面外一条直线与此平面内的若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行一条直线平行,则该直线与此平面平行.思考思考3 3:上述定理通常称为上述定理通常称为直线与平面平直线与平面平行的判定定理行的判定定理,该定理用符号语言可怎,该定理用符号语言可怎样表述?样表述?,,且,且 .思考思考4 4:直线与平面平行的判定
5、定理可直线与平面平行的判定定理可简述为简述为“线线平行,则线面平行线线平行,则线面平行”,在,在实际应用中它有何理论作用?实际应用中它有何理论作用?通过直线间的平行,推证直线与平面平通过直线间的平行,推证直线与平面平行,即将直线与平面的平行关系(空间行,即将直线与平面的平行关系(空间问题)转化为直线间的平行关系(平面问题)转化为直线间的平行关系(平面问题)问题).思考思考5 5:设直线设直线a a,b b为异面直线,经过为异面直线,经过直线直线a a可作几个平面与直线可作几个平面与直线b b平行?平行?ba理论迁移理论迁移例例1 1 在空间四边形在空间四边形ABCDABCD中,中,E E,F
6、F分别是分别是ABAB,ADAD的中点,求证:的中点,求证:EF/EF/平面平面BCD.BCD.ABCDEF 例例2 2 在长方体在长方体ABCDABCDA A1 1B B1 1C C1 1D D1 1中中.(1 1)作出过直线)作出过直线ACAC且与直线且与直线BDBD1 1平行的平行的 截面,并说明理由截面,并说明理由.(2 2)设)设E E,F F分别是分别是A A1 1B B和和B B1 1C C的中点,的中点,求证直线求证直线EF/EF/平面平面ABCD.ABCD.ABCC1DA1B1D1EFMG GH H作业作业P55P55练习:练习:1.1.P62P62习题习题2.2A2.2A组:组:3 3,4.4.