1、 摘 要 汽包水位是影响锅炉安全运行的一个重要参数,汽包水位过高或者过低的后果都非常严重,因此对汽包水位必须进行严格控制。PLC技术的快速发展使得PLC广泛应用于过程控制领域并极大地提高了控制系统性能,PLC已经成为当今自动控制领域不可缺少的重要设备。本文从分析影响汽包水位的各种因素出发,重点分析了锅炉汽包水位的“假水位现象”,提出了锅炉汽包水位控制系统的三冲量控制方案。按照工程整定的方法进行了PID参数整定,并进行了仿真研究。根据控制要求和所设计的控制方案进行硬件选型以及系统的硬件设计,利用PLC编程实现控制算法进行系统的软件设计,最终完成PLC在锅炉汽包水位控制系统中应用。关键词:汽包水位
2、、三冲量控制、PLC、PID控制ABSTRACT The steam drum water level is a very important parameter for the boiler safe operation, both high and low steam drum water level may lead to extremely serious consequence; therefore it must be strictly to be controlled. With the rapid development of PLC technology, it can wi
3、dely be applied to the process control domain and enhances the performance of control system enormously. PLC has already become the essential important equipment in automatic control domain.Based on the analysis of all kinds of factors which influence steam drum water level, “unreal water level phen
4、omenon”is analyzed specially, and three impulses control plan for steam drum water level control system is proposed. According to the needs of control, the selection of control requirements hardware and system hardware design as well as system software design are carried out. Finally the application
5、 of PLC in boiler steam drum water control system is completed.Key words: Steam drum water level、Three impulses control、PLC、PID control目 录摘 要.ABSTRACT.1 绪 论11.1汽包水位控制系统的发展现状11.2汽包水位调节的任务21.3本设计的主要工作22 控制方案设计32.1虚假水位的形成及对策32.2汽包水位的影响因素42.3汽包水位的控制方案设计63 硬件选型143.1PLC及相关模块选型143.2电机的选型143.3变频器的选型153.4水位传
6、感器的选型153.5流量传感器的选型163.6接触器的选型173.7熔断器的选型173.8功率三极管的选型183.9变压器的选型183.10设备清单194 硬件设计204.1系统总体线路设计204.2 控制线路设计225参数整定与仿真245.1 PID算法简介245.2 三冲量控制系统参数整定245.3 三冲量控制系统仿真分析306 软件设计346.1程序流程设计346.2 GX Developer程序设计36结束语42参考文献43致谢44附录 锅炉汽包水位控制系统原理图451 绪 论1.1汽包水位控制系统的发展现状蒸汽锅炉是企业重要的动力设备,其任务是供给合格稳定的蒸汽产品,以满足负荷的需要
7、。锅炉是一个十分复杂的控制对象,为保证提供合格的蒸汽产品以适应负荷的需要,与其配套设计的控制系统必须满足各主要工艺参数的需要。保持锅炉汽包水位在正常范围内是锅炉运行的一项重要的安全性能指标,由于负荷、燃烧状况及给水流量等因素的变化,汽包水位会经常发生变化1。因此锅炉汽包水位应当根据设备的运行状况进行实时调节加以严格控制以保证锅炉的安全运行。工业蒸汽锅炉汽包水位控制的任务是控制给水流量使其与蒸发量保持动态平衡,维持汽包水位在工艺允许的范围内,是保证锅炉安全生产运行的必要条件,锅炉汽包水位也是锅炉运行中一个重要的监控参数,它间接地体现了锅炉负荷和给水之间的平衡关系。传统的控制方法是以各种分立器件的
8、应用为基础,利用各种检测器件对被控参数实时进行检测并反馈给控制器件,再根据自动控制理论的有关算法完成相应的运算并驱动调节机构完成相应的动作,从而达到自动控制的目的。但是这种控制方式受分立器件的性能影响大,系统各部分之间影响较大,自动化水平不高,控制效果并非十分理想,而且容易出现故障。现在广泛使用的控制技术还有DCS集散控制系统2,但由于DCS系统适合有多个控制回路同时工作的复杂系统,而且集散控制系统往往价格昂贵,对于像汽包水位这样的控制系统来说性价比太高,因此对于汽包水位控制系统来说并非理想的选择。PLC是70年代发展起来的中大规模的控制器,是集CPU、RAM、ROM、I/O接口与中断系统于一
9、体的器件3,已经被广泛应用于机械制造、冶金、化工、能源、交通等各种行业。随着计算机在操作系统、应用软件、通信能力上的飞速发展,大大增强了PLC通信能力,丰富了PLC编程软件和编程技巧,增强了PLC过程控制能力。因此,无论是单机还是多机控制、生产流水线控制及过程控制都可以采用PLC技术。PLC控制锅炉技术是近年来开发的一项新技术。它是PLC软、硬件、自动控制、锅炉节能等几项技术紧密结合的产物。作为锅炉控制装置,其主要任务是保证锅炉的安全、稳定、经济运行,减轻操作人员的劳动强度。采用PLC控制技术,能实现对锅炉运行过程的自动检测、自动控制等多项功能。它的被控量是汽包水位,而调节量则是汽包给水流量,
10、通过对汽包水位的实时检测并进行反馈,PLC对反馈信号和给定信号进行比较,然后根据控制算法对二者的偏差进行相应的运算,运算结果输出给执行机构从而实现给水流量的调节,使汽包内部的物料达到动态平衡,汽包水位变化在允许范围之内。1.2汽包水位调节的任务给水自动调节也叫水位自动调节,其主要任务是:(1)维持锅炉水位在允许的范围内,使锅炉的给水量适应于蒸发量。锅炉的水位是影响安全运行的重要因素。水位过高会影响汽水分离装置的正常工作,严重时会导致蒸汽带水增加,使过热器管壁和气轮机叶片结垢,造成事故。水位过低,则会破坏汽水正常循环,以致烧坏受热面。水位过高或过低,都是不允许的。所以,正常运行时汽包水位应在给定
11、值的30mm上下范围波动。(2)保持给水量稳定。给水量稳定,有助于省煤器和给水管道的安全运行。实践证明,无论是电站锅炉,或者是工业锅炉,用人工操作调节水位,既不安全,也不经济,其最有效的方法是实现给水自动调节。1.3本设计的主要工作 本次设计的主要工作有:(1) 设计锅炉汽包水位控制方案 从锅炉汽包水位的动态性能入手,分析影响锅炉汽包水位的主要因素,并对这些因素对锅炉汽包水位动态性能的影响进行理论研究。根据各个因素对锅炉汽包水位的影响采用汽包水位三冲量方案,达到控制锅炉汽包水位稳定的目的。(2) 硬件设备的选型与设计根据所设计的控制方案合理地选择检测元件、执行机构和控制设备以及其它必要设备,并
12、在此基础之上根据控制方案合理地进行硬件设计。为整个系统的实现以及稳定、可靠运行打下基础。(3) 控制算法的参数整定与仿真根据被控对象的特点以及它的静态、动态特性按照工程整定的方法进行控制器的参数整定,设计调节器的各个参数。在此基础之上对整定结果进行仿真,并对整定结果进行进一步调整判断其可行性,为后续的软件设计工作打下基础。(4)PLC程序根据参数整定和仿真的结果利用相关软件进行PLC梯形图程序设计,最终实现控制算法。2 控制方案设计锅炉是重要的动力设备,其任务是供给合格稳定的蒸汽,以满足负荷的需要。汽包水位是影响锅炉安全运行的重要参数,如果水位过高,会破坏汽水分离装置的正常工作,严重时会导致蒸
13、汽带水增多,增加在管壁上的结垢和影响蒸汽质量。如果水位过低,则会破坏水循环,引起水冷壁管的破裂,严重时会造成干锅,损坏汽包锅炉。所以锅炉汽包水位过高过低都可能造成重大事故。在锅炉汽包水位控制系统中被控量是汽包水位,而调节量则是给水流量,通过对给水流量的调节, 使汽包内部的物料达到动态平衡状态,从而使汽包水位的变化在允许范围之内,保证锅炉的安全运行,生产出合格稳定的高质量蒸汽,以满足负荷的需要。本设计的锅炉选用DZL35-0.5-大型厂矿、集中供热等方面。本设计控制锅炉的其它主要参数如表1.1所示: 表2.1锅炉主要参数型号DZL35-0.5-安装方式组装锅炉循环方式自然循环额定蒸发量35t/h
14、额定水位300mm额定蒸汽压力0.5MP额定蒸汽温度194额定供水量35 m3/h燃料消耗量3895.5 kg/h额定给水温度202.1虚假水位的形成及对策 “虚假水位”是锅炉运行时不真实的水位。“虚假水位”的产生是由于当汽包压力突降时,炉水饱和温度下降到压力较低时的饱和温度,使炉水大量放出热量来进行蒸发。于是炉水内的汽泡增加,汽水混合物体积膨胀,使水位不是下降而是很快上升,形成“虚假水位”。当汽包压力突升时,则相应的饱和温度提高一部分热量被用于加热炉水,而用来蒸发炉水的热量则减少,炉水中汽泡量减少,使汽水混合物的体积收缩,使水位不是上升而是很快下降,形成“虚假水位”。 此外当锅炉内热负荷增加
15、或骤减时,水的比容将增大或减小,也会形成虚“假水位”。锅炉负荷突变、灭火、安全门动作、燃烧不稳时,都会产生“虚假水位”。在负荷突然变化时,汽压也相应变化,这时将会出现“虚假水位”。负荷变化速度越快,“虚假水位”越明显。如遇汽轮机甩负荷,汽压突然升高,水位将瞬时下降;运行中燃烧突然增强或减弱,引起汽泡量突然增大或减少,使水位瞬时升高或下降;安全阀起座时,由于压力突然下降,水位瞬时明显升高;锅炉灭火时,由于燃烧突然停止,锅水中汽泡产量迅速减少,水位也将瞬时下降。在输入端引入蒸汽流量信号,设置水位系统的前馈调节,于是当蒸汽流量增大时,给水量随之增大,给水量增多,水温又较低,有利于克服“虚假水位”的影
16、响。2.2汽包水位的影响因素首先应该从分析汽包水位的动态特性入手。锅炉给水调节对象如图 2.1所示。给水调节机构为变频器调节给水量W,汽轮机耗汽量D是由汽轮机阀门开度来控制的。图 2.1锅炉给水调节对象初看起来,汽包水位的动态特性似乎和单容水槽一样,给水量和蒸汽流量影响汽包水位的高低4。但实际情况并非如此,最突出的一点就是水循环系统中充满了夹杂着大量蒸汽汽泡的水,而蒸汽泡的体积V是随着汽包压力和炉膛热负荷的变化而变化的。如果有某种原因使汽泡的总体积变化了,即使水循环系统的总水量没有发生变化,汽包水位也会因此随之发生改变从而影响水位的稳定。影响汽包水位H的主要因素有给水量W,汽轮机耗汽量D和燃料
17、量B三个主要因素。(1)给水扰动的影响如果把汽包及其水循环系统看作一个单容水槽,那么水位的给水阶跃扰动响应曲线应该为图2.2所示的曲线H1所示。但考虑到给水的温度低于汽包内饱和的水温度,当它进入汽包后吸收了原有的饱和水中的一部分热量使得锅炉内部的蒸汽产量下降,水面以下的汽泡的总体积V也就会相应的减小,从而导致水位下降如图2.2所示的曲线H2所示。水位的实际响应曲线应是曲线H1和 H2之和,如图2.2所示的曲线H所示。它是一个具有延迟时间的积分环节,水的过冷度越大则响应延迟时间就会越长。其传递函数可以近似表示为: (2.1)式2.1中表示汽包水位的飞升速度,表示延迟时间。图2.2给水扰动响应曲线
18、(2)汽轮机耗汽量扰动的影响当汽轮机耗汽量D突然做阶跃增加时,一方面改变了汽包内的物质平衡状态,使汽包内液体蒸发量变大从而使水位下降,如图2.3所示的曲线H1所示,另一方面由于汽轮机耗汽量D的突然增加,将迫使锅炉内汽泡增多,同时由于燃料量维持不变,汽包压力下降,从而导致汽包水位上升,如图2.3所示曲线H2所示。水位的实际响应曲线应该是曲线H1和 H2之和,如图2.3所示曲线H所示。对于大中型锅炉来说,后者的影响要大于前者,因此负荷做阶跃增加后的一段时间内会出现水位不但没有下降反而明显升高的现象,这种反常现象通常被称为“假水位现象”。可以认为这是一个惯性加积分环节,其传递函数可以近似的表示为:
19、(2.2)式2.2中表示汽包水位对于蒸汽流量的飞升速度,表示“假水位现象”的延迟时间。 图2.3汽轮机耗汽量扰动响应曲线(3)燃料量扰动的影响当燃料增加时,炉膛热负荷随着增加,水循环系统内的汽水混合物的气泡比例增加,形成水位升高的虚假现象.如图2.4中H1曲线所示. 如果负荷设备的进气阀不加调节,则汽包饱和压力升高,蒸汽流出量增加,蒸发量大于给水量,水位应该下降。随着汽包压力的升高,汽水混合物中汽泡的比例将减小,又使得汽水总容积下降.如图2.4中H2曲线所示. 水位的实际响应曲线应该是曲线H1和 H2之和,如图2.4所示曲线H所示。由图知在燃料量扰动下,汽包水位也会因汽包容积的增加水位先上升,
20、因此也会出现“虚假水位”现象,至蒸发量与燃料量相适应时,水位才开始下降,即经过了Tm时间后水位开始下降。但由于汽包水循环系统中有大量的水,汽包和水冷壁管道也会存储大量的热量,因此具有一定的热惯性。燃料量的增大只能使蒸汽量缓慢增大,而且同时汽压也会缓慢上升,它将使汽泡体积减小,因此燃料量扰动下的“假水位现象”比负荷扰动下要缓和的多。 图2.4燃料量扰动响应曲线由以上分析可知道给水量扰动下的水位响应有迟滞性,负荷扰动下的水位响应有“假水位现象”。这些特性使得汽包水位的变化受到多种因素影响,因而对它的控制变得比较复杂和困难。2.3汽包水位的控制方案设计 (1)单冲量控制系统 从反馈的思想出发很容易想
21、到以汽包水位信号作为反馈量,给水流量作为被控量,构成单回路反馈控制系统,即水位单冲量控制系统。如图2.5所示,这是一个基本的控制方案其方框图如图2.6所示。对于小容量锅炉来说由于它的储水容量较大,水面以下的汽泡体积并不占有非常大的比重,因此水容积延迟和假水位现象并不是非常明显,因此可以采用汽包水位单冲量控制系统来控制汽包水位。但对于大中型锅炉来说这种控制方案就不能满足控制要求,因为汽轮机蒸汽量的负荷扰动引起的假水位现象将引起给水调节机构的误动作,导致汽包水位激烈的上下振荡而不稳定,严重的影响设备的运行寿命和安全,所以大中型锅炉不宜仅仅只采用汽包水位单冲量控制系统,必须寻找其他的解决办法来控制汽
22、包水位。图2.5汽包水位单冲量控制系统液位给水流量给定液位给水流量调节器变频器汽包液位变送器电机图2.6汽包水位单冲量控制系统框图(2)随动控制系统如果从物质平衡的角度出发,只要能够保证给水量永远等于蒸汽蒸发量就可以保证汽包水位大致不变。因此可以采用图2.7所示的蒸汽流量随动控制系统,其中流量调节器采用PI调节器,使汽轮机的蒸汽量作为系统的给定使给水流量跟踪蒸汽流量的变化,构成了一个以蒸汽量作为给定的随动系统从而保证汽包水位的恒定。该方案的结构框图如图2.8所示。图2.7蒸汽流量随动控制系统给定液位液位给水流量蒸汽量变送器液位变送器给水量变送器变频器汽包电机 图2.8蒸汽流量随动控制系统框图(
23、3)双冲量控制系统采用该方案的优点是系统完全根据物质平衡条件工作,给水量的大小只取决于汽轮机的耗汽量,假水位现象不会引起给水调节机构的误动作。但是这个系统对于汽包水位来说只是开环控制系统。由于给水量和蒸汽量的测量不准确以及锅炉系统引入的其他扰动使得给水量和蒸汽量并非准确的比值关系而保持水位恒定。由于水位对于二者的偏差是积分关系,微小的偏差长时间积累也会形成很大的水位差,因此不宜采用随动控制系统。如果把以上所述两种方案结合起来,就构成了汽包水位双冲量控制系统如图2.9所示,其结构框图如图2.10所示。双冲量指的是同时引入两个测量信号:汽包水位和蒸汽流量。这个系统对以上所分析的两种方案取长补短,可
24、以极大的提高汽包水位的控制质量。当汽轮机耗汽量出现阶跃增大时,一方面由于“假水位现象”汽包水位会暂时有所升高,将使调节机构做出误动作错误的减少给水量;另一方面汽轮机耗汽量的增大又通过比值控制系统指挥调节机构增大给水量,实际给水量的增减情况要根据实际情况通过参数整定来确定。当假水位现象消失后水位和蒸汽信号都能正确的指挥调节机构动作。只要参数整定合适,给水量必然等于蒸汽量从而保证水位恒定。图2.9汽包水位双冲量控制系统液位液位调节器给水流量调节器变频器汽包液位变送器前馈调节器蒸汽流量变送器蒸汽管道给定液位蒸汽流量电机图2.10汽包水位双冲量控制系统框图(4)三冲量控制系统三冲量控制方案之一: 如图
25、2.11、2.12所示,该方案实质上是前馈(蒸汽流量)加反馈控制系统。这种三冲量控制方案结构简单,只需要一台多通道调节器,整个系统亦可看作三冲量的综合信号为被控变量的单回路控制系统,所以投运和整定与单回路一样,但是如果系统设置不能确保物料平衡,当负荷变化时,水位将有余差。 图2.11汽包水位三冲量控制系统(方案一)蒸汽流量给水流量调节器电机汽包给水流量变送器蒸汽流量变送器蒸汽管道给定液位液位液位变送器给水流量变频器图2.12汽包水位三冲量控制系统框图(方案一)三冲量控制方案二: 如图2.13、2.14所示,该方案与方案一相类似,仅是加法器位置从调节器前移至调节器后。该方案相当于前馈-串级控制系
26、统,而副回路的调节器比例度为100%,该方案当负荷变化时,液位可以保持无差。 图2.13汽包水位三冲量控制系统(方案二)给水流量给定液位蒸汽流量给水流量调节器电机汽包给水流量变送器蒸汽流量变送器蒸汽管道液位液位变送器变频器液位调节器 图2.14汽包水位三冲量控制系统框图(方案二)三冲量控制方案三: 考虑蒸汽流量的扰动造成“虚假水位”的影响,可以在方案二的基础上在蒸汽扰动上引入前馈微分补偿环节。微分作用具有预测的功能,所以蒸汽流量信号引入微分后,这样动态补偿可以获得较好的效果。如图2.15所示的三冲量控制系统。即前馈反馈串级复合控制系统。系统框图为图2.16。该三冲量控制系统包含给水流量控制回路
27、和汽包水位控制回路两个控制回路以及一个蒸汽流量前馈通道,实质上是蒸汽流量前馈与水位流量串级系统组成的复合控制系统。串级控制系统的主参数是汽包水位,副参数是给水流量,主调节器是液位流量调节器,副调节器是给水流量调节器。图2. 15汽包水位三冲量控制系统(方案三)液位给水流量给定液位蒸汽流量给水流量调节器电机汽包给水流量变送器蒸汽流量变送器蒸汽管道液位变送器变频器液位调节器前馈调节器 图2.16汽包水位三冲量控制系统框图(方案三)三冲量控制方案三,一方面可以克服给水扰动,使给水流量自行调节,另一方面可以有效地抑制“假水位现象”。 微分作用使其动态补偿可以获得较好的效果。当蒸汽流量发生变化时,锅炉汽
28、包水位控制系统中的给水流量控制回路可迅速改变进水量的大小以完成粗调,然后再由汽包水位调节器完成水位的细调维持汽包水位的稳定。该方案适用于大容量高压锅炉,而且要求水位控制严格的场合。因此该系统选用这种控制方案。3 硬件选型3.1PLC及相关模块选型PLC具有丰富的控制功能及强大的运行速度,因此可以作为系统的控制器。三菱公司生产的FX系列PLC拥有快速的运行速度,高级的功能逻辑选件以及定位控制等特点。FX2N可以有从16路到256路输入/输出的多种应用的选择方案。FX2N是FX系列中最高档次的超小形程序装置,具有小型化,高速度,高性能等特点。除输入输出16-25点的独立用途外,还可以适用于在多个基
29、本组件间的连接,模拟控制,定位控制等特殊用途,是一套可以满足多样化广泛需要的PLC。在基本单元上连接扩展单元或扩展模块,可进行16-256点的灵活输入输出组合。可选用16/32/48/64/80/128点的主机。可根据电源及输出形式,自由选择。输出形式可以选择继电器、晶体管、晶闸管输出。程序容量:内置800步RAM(可输入注释)可使用存储盒,最大可扩充至16K步。丰富的软元件应用指令中有多个可使用的简单指令,功能指令。具有数字开关的数据读取,16位数据的读取,矩阵输入的读取,7段显示器输出等功能。可以进行数据处理、数据检索、数据排列、三角函数运算、平方根、浮点小数运算还可以进行外部设备相互通信
30、,串行数据传送,ASCII code印刷,HEX ASCII变换,校验码等。具有一些特殊用途如:脉冲输出(20KHZ/DC5V,KHZ/DC12V-24V),脉宽调制,PID控制指令等。本设计PLC选用FX2N系列PLC。它是FX系列PLC中功能最强、速度最快的微型可编程控制器。本设计PLC的输入信号有开始、关闭、最高水位、最低水位。需要的输出信号有正常运行信号、极限处理信号、报警信号。此外扩展模块还需要占用PLC的一些输入输出点。选用32点的PLC即可满足要求。晶闸管输出方式可适用于交流负载。它的响应速度快(关断变导通的延迟时间小于1ms,导通变为关断的延迟时间小于10ms)。它可以满足该系
31、统要求,因此选用晶闸管输出方式。综合考虑各型号性能,本设计选用FX2N-32MS型号的PLC。该系统需要输入与输出的模拟量有:给水流量信号、水位信号、蒸汽流量信号、变频器给定信号。因此需要选择一个模拟量输入模块FX2N-4A/D、一个模拟3.2电机的选型电机是锅炉汽包供水的动力设备,电机的准确选型关系到汽包能否准确供水进而影响到汽包水位的稳定。控制的锅炉蒸发量为:35t/h,汽包压力0.5MP,管道直径50mm因此可以对正常工作时电机的功率作如下估算: (3.1)由计算结果可以知道选用功率为100Kw的三相异步电动机完全可以满足工作要求,由于使用变频调速不必选用绕线型异步电动机,选用鼠笼型电机
32、就可以满足要求。 YJTG三相变频调速电机专门为变频调速设计,可以根据技术要求设定其额定电压为380V额定功率为100Kw。3.3变频器的选型变频器是电机的供能设备,合理选择变频器关系到电机能否正常为汽包供水。由电机的选型可以知道电机在50Hz三相交流电下工作时电机的功率大约是100Kw,当三相交流电动机在基频以下工作时为恒转矩输出,而此时电机的转速会小于额定转速,因此电机的输出功率也会小于额定功率,同时由于电机的转矩保持不变,其工作电流同在50Hz三相交流电下工作时电流基本一致。根据以上的分析可以选择三菱变频器 FR-F740系列的变频器。给变频器可以输入380V-480V 50/60Hz三
33、相交流电,输出380-480V三相交流电并通过控制信号控制其输出频率,其容量是37KW220KW,可以满足设备功率要求。该型号变频器具有丰富灵活的控制接口,可以通过控制信号方便地改变变频器的工作特性。内置PID,变频器/工频切换和多泵循环运行功能。内置独立的RS485通讯口。带有节能监控功能,节能效果一目了然。3.4水位传感器的选型由于该设计的目的是控制水位稳定,而整个控制系统的基础是对水位的准确测量,因此水位能否准确测量直接关系到控制质量的优劣。合理的选择水位传感器在水位控制系统的设计中有关键作用。知道汽包水位应该控制在30030mm,根据过程控制仪表量程选择原则:仪表量程应该为被测量参数的
34、4/33/2倍。因此所选传感器的最大量程为:400450 mm。而且汽包水位应该控制在30030 mm,因此所选水位传感器的精度应该高于10/450=6.7%FS。CR-6031型智能锅炉汽包液位计,采用独特结构,耐高温、高压,其中变送器利用液位变化与其对测量探极产生的电容变化之间的关系,通过专用模式系统软件将检测的电容变化经各种补偿计算后输出与物位成正比的4-20maDC 标准信号。选择测量围为:100500mm,测量精度在1%FS的型号可以满足控制要求。该型号的传感器主要技术参数如下:量程:100500mm(水位高/深度)综合精度: 1.0%FS 输出信号: 420ma(二线制)、05V、
35、15V、010V(三线制) 供电电压: 24DCV(936DCV) 负载电阻: 电流输出型:最大800;电压输出型:大于50K 绝缘电阻: 大于2000M (100VDC )密封等级: IP68 长期稳定性能: 0.1%FS/年 振动影响: 在机械振动频率20Hz1000Hz内,输出变化小于0.1%FS 电气接口(信号接口): 紧线防水螺母与五芯通汽电缆连接机械连接(螺纹接口): 投入式使用时可以采用24V直流电源为水位传感器供电保证其正常工作,将15V电压信号作为反馈量引入PLC模拟量输入端口进行控制运算。3.5流量传感器的选型根据控制方案可以知道流量传感器用于测量给水流量和蒸汽流量,这两个
36、信号可以有效地改善控制质量,因此合理的选择流量传感器能够有效的改善整个系统的控制质量。知道所要控制的是35t/h锅炉的汽包水位,即该锅炉正常工作时每小时蒸发35t蒸汽也就是有35t水被蒸发成为蒸汽,水位稳定时供水量为:35 m3/h 。LUGB-99型涡街流量计是一种基于卡门涡街原理流体振动式新型流量计,它具有测量范围广、压损小、性能稳定、准确度高和安装、使用方便等优点,广泛应用于封闭工业管道中液体、汽体和蒸汽介质体积和质量流量的测量。该流量计的技术参数如下:(1)测量介质:蒸汽、汽体、液体(2)传感器的感应元件不直接与被测介质接触,性能稳定、可靠性高(3)传感器内无可动部件,结构简单而牢固,
37、压损小维扩量小、使用寿命长(4)范围度宽达10:115:1(5)测量范围:正常工作范围,雷诺数为20,0007,000,000;输出信号不受液体温度、压力、粘度及组份影响。测量可能范围,雷诺数8,0007,000000(6)精度等级:液体,指示值的1.0%;蒸汽,指示值的1.5%(7)输出信号:a.电压脉冲低电平:0-1V;高电平:大于4V;占空比为 50% b .电流: 420ma(三线制) (8)电源电压: 24DCV(9)壳体材料:碳钢;不锈钢(1Cr18Ni9Ti)(10)规格:(管道内径)20、25、32、40、50、65、80、125、150、200、 250、300(大于DN30
38、0 口径为插入式)根据过程控制仪表量程选择原则仪表量程应该为被测量参数的4/33/2倍,流量计应当能够检测的最大流量为:46.552 m3/h,因此汽包送水管道直径选用50 mm并用LUGB-99型涡街流量计检测流量可以检测的流量范围是350 m3/h,可以满足设计要求进行检测汽包给水流量信号。由于LUGB-99型涡街流量计既可用于液体流量检测也可用于蒸汽流量检测,因此还可以选择该流量计作为汽包负荷蒸汽流量的检测传感器。正常工作时汽包蒸汽压力大约是0.5MP,由蒸汽密度表可以查到蒸汽密度大约是2700Kg/ m3,根据过程控制选择仪表量程原则仪表量程应该为被测量参数的4/33/2倍,流量计应当
39、能够检测的最大流量为:17.219.2 m3/h因此汽包蒸汽管道直径选用20 mm,并用LUGB-99型涡街流量计检测流量可以检测的流量范围是880 m3/h,可以满足设计要求进行检测蒸汽流量信号。3.6接触器的选型接触器是系统中用到的重要开关设备,接触器的合理选择能保证交流电动机能够准确及时的启动、停止。根据分析三相交流异步电机的最高工作电流是工作于50Hz交流电压下,其工作电流为: (3.2)因此根据设计的要求选用HLC-3X系列空调接触器,它主要适用于50Hz或60Hz、额定工作电压为220V或480V时额定电流至40A电路中,适用于起动和控制三相交流电动机(压缩机)及其它三相负载,选择
40、五套该类型接触器同时带动一台电机可以满足设计要求。3.7熔断器的选型由于系统的主要耗电设备是电动机,因此系统稳定工作时电流大约在150A左右,当系统异常工作是可能导致工作电流变大因此可设定工作电流为200A时进行过流保护。生产2型限流熔断器型额定电流可以设定为200A,可以满足设计要求。3.8功率三极管的选型 为了能使PLC输出的数字量能够控制接触器的通断设计如下电路: 图3.1接触器控制线路当PLC数字量输出为高电平时三极管导通工作于饱和状态,接触器线圈上电使接触器触点闭合,否则PLC数字量输出为低电平时三极管截止工作于截止状态,接触器线圈失电通过二极管续流,使接触器触点断开。I3DD568
41、6型功率三极管最大工作电流超过5A,完全可以满足工作要求。3.9变压器的选型 液位传感器、流量传感器设备需要在DC24V电压下才能正常工作。SA-100-24型变压器采用脉冲宽度调制(PWM)方式。该变压器效率高,工作温度低,体积小,重量轻,电压变动率低。内附突入电流抑制电路、具有短路保护、过载保护、过压保护等功能。进口器材,高可靠性高,内置滤波器,低纹波。可长期满载使用。产品规格如下: 1)品名:开关电源式变压器 6)调制方式 脉冲宽度调制(PWM)式2)型号:SA-100/24 7)晶体管连接方式)全桥式3)额定功率:100W 8)频率:47HZ/63HZ 4)输入电压:220V/110(
42、AC) 9) 纹波及噪音:100mvp-p5)输出电压:24V(DC) 10)工作环境温度:-10-603.10设备清单综上所述可以得到硬件设备的清单如表3.2所示。表3.2硬件设备清单设备名称型号额定电压额定电流额定功率数量三相电机YJTG型380VAC61A100Kw2变频器FR-F740型380VAC100Kw1功率三极管I3DD5686型2PLC CPU模块FX2N-32MS型220VAC1模拟量输入模块FX2N-4A/D1数字量输出模块FX2N-2D/A1变压器SA-100-24型24VDC200W1接触器HLC-3X型380VAC5熔断器2型200A3水位传感器CR-6031型24
43、DCV3流量传感器LUGB-99型24DCV24 硬件设计4.1系统总体线路设计首先需要三相电源为系统供电,由电源插头引入,同时通过过流保护装置以保证电流过大时能够及时断电,以确保安全不造成设备的损坏,正常情况下设备工作不会发生电流过大的现象,只有在出现故障时才有可能发生过流现象,此时需要通过过流保护装置断电以确保安全。对于需要220V交流电压工作的设备可以连入三相电源中的任意一相与中性线之间的220V交流电压。此外在需要接地的地方还要引入地线以保证可靠接地确保安全。由于系统内各种传感器等设备需要直流电压才能正常工作,因此还需要一个整流装置将它的交流输入侧连入任意一相与中性线之间的220V交流
44、电压下并对220V交流电进行整流稳压,然后输出稳定的直流电压,直流输出侧可以为各个直流设备提供直流电压保证各个设备稳定、有效、安全的工作。由于选用的是交-直-交变频器因此应当首先应该将380V三相交流电连入变频器的L1、L2、L3三个端子输入供变频器整流,逆变后的是频率、电压变化的三相交流电,通过接触器的常开触点连入三相异步电动机的定子侧回路为其工作提供电源,PLC根据传感器送入的信号进行逻辑运算、判断。将运算结果输出到变频器,通过变频器调压从而调节电机转速进而改变汽包的送水流量对汽包水位进行调节。同时直接将由电网引入的三相电通过另一接触器的常开触点连入三相异步电机的定子侧回路,此时电机工作于
45、工频50Hz三相交流电下以用来在调试系统时或其他情况下使用。但两个接触器不能同时闭合,否则将会发生事故。根据以上所述系统原理图如附录所示。设计电气主线路如图4.1所示。图4.1总体电气线路图4.2 控制线路设计由于 图4.2控制线路连线图根据以上设计可以得到传感器线路接线表如表4.2所示。表4.2传感器线路接线 m3/h m3/hWFWF+/WF-送水流量 m3/hm3/h5参数整定与仿真5.1 PID算法简介要使控制系统具有良好的控制性能,除了必须正确的选取、设计控制方案以外,还必须正确的选择控制算法并进行参数整定。在控制系统中,按照给定信号和反馈信号之间的偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器是应用最为广泛的一种自动控制器8。它具有
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100