ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:123KB ,
资源ID:1640134      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1640134.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(相似三角形的判定及习题.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

相似三角形的判定及习题.doc

1、.知识点:相似三角形1、 相似三角形1)定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。几种特殊三角形的相似关系:两个全等三角形一定相似。两个等腰直角三角形一定相似。两个等边三角形一定相似。两个直角三角形和两个等腰三角形不一定相似。补充:对于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等);2) 性质:两个相似三角形中,对应角相等、对应边成比例。3) 相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。 如ABC与DEF相似,记作ABC DEF。相似比为k。4)判定:定义法:对应角相等,对应边成比例的两个三角形相似。三角形相似

2、的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。 三角形相似的判定定理:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似简述为:两角对应相等,两三角形相似(此定理用的最多)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似简述为:两边对应成比例且夹角相等,两三角形相似判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似简述为:三边对应成比例,两三角形相似直角三角形相似判定定理:.斜边与一条直角边对应成比例的两直角三角形相似。.直角三角形被

3、斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。 补充一:直角三角形中的相似问题:斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似.射影定理:CD=ADBD, AC=ADAB,BC=BDBA(在直角三角形的计算和证明中有广泛的应用). 补充二:三角形相似的判定定理推论推论一:顶角或底角相等的两个等腰三角形相似。 推论二:腰和底对应成比例的两个等腰三角形相似。 推论三:有一个锐角相等的两个直角三角形相似。 推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。 推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,

4、那么这两个三角形相似。相似三角形的判定一、填空题:1、如图,已知ADE=B,则AED _2、如图,在RtABC中,C=90,DEAB于D,则ADE_3、如图;在C=B,则_ _,_ _4、RtABC RtABC, C=C=90,若AB=3,BC=2,AB=6,则BC=_, AC=_5、在ABC和ABC中,B=B, AB =6, BC=8,BC=4,则当AB=_时,ABCABC,当AB=_时,ABCC B A6、如图;在ABC中,DE不平行BC,当时,ABCAED,若AB=8,BC=7,AE=5,则DE=_7、如图;在Rt ABC中,ACB=90,AF=4,EFAC交AB于E,CDAB,垂足D,

5、若CD=6,EF=3,则ED=_,BC=_,AB=_8、如图;点D在ABC内,连BD并延长到E,连AD、AE,若BAB=20,则EAC=_9、如图;在Rt ABC中,ACB=90,CDAB,AC=6,AD=3.6,则BC=_10、已知;CADB ,DEAB,AC、ED交于F,BC=3,FC=1,BD=5, 则AC=_二、选择题;11、下列各组图形必相似的是-( )A、任意两个等腰三角形 D、斜边和一条直角边对应成比例的两个直角三角形C、两条边成比例的两个直角三角形 B、两条边之比为2:3的两个直角三角形 12、如图;AOD=90,OA=OB=BC=CD,那么下列结论正确是-( )A、OABOC

6、A B、OAB ODAC、BACBDA D、以上结论都不对13、点P是ABC中AB边上一点,过点P作直线(不与直线AB重合)截ABC,使得的三角形与原三角形相似,满足条件的直线最多有-( )A、2条 B、3条 C、4条 D、5条14、 在直角三角形中,两直角边分别是3、4,则这个三角形的斜边与斜边上的高的比是-( ) A、 B、 C、 D、15、ABC中,D是AB上的一点,在AC上取一点E,使得以A、D、E为顶点的三角形与ABC相似,则这样的点最多是-( ) A、0 B、1 C、2 D、无数16、如图;正方形ABCD中,E是CD的中点,FC=BC结论正确个数是-( )(1)ABFAEF (2)

7、ABFECF (3)ABFADE(4)AEFECF (5)AEFADF (6)ECFADE 17、已知;ABC中,P为AB上一点,下列四个条件中;(1)ACP=B;(2)APC=ACB;(3)(4)ABCP=APCB,能满足APC ACB相似的条件是-( )A、(1)(2)(4) B、(1)(3)(4) C、(2)(3)(4) D、(1)(2)(3)18、如图;正方形ABCD的对角线AC、BD相交于点O,E是中点,DE交AC于F,若DE=12,则EF等于-( )A、8 B、6 C、4 D、3三、简答题19、如图,已知在ABC中,AE=AC,AHCE,垂足K,BHAH,垂足H,AH交BC于D。求

8、证:ABH ACK20、如图;正方形ABCD中,P是BC上的点,BP=3PC,Q是CD中点,求证:ADQ QCP21、如图;已知梯形ABCD中,AD/BC,BAD=90,对角线BDDC。 求证:(1)ABD DCB (2)BD2=ADBC22、如图;以DE为轴,折叠等边ABC,顶点A正好落在BC边上F点,求证;DBF FCE23、ABC中,AB=AC,BAC=108,D是BC上一点,且BD=BA。求证;ABC DAC24、在等边ABC中,D在BC上,E在CA上,BD=CE,AD、BE相交于F。求证:(1)ABD BFD (2)AEF ADC25、如图,已知AB/EF/CD。若AB=6厘米,CD=9厘米,求EF26、如图, ABCD的对角线交于O,OE交BC于E,交AB的延长线于F,若AB=a,BC=b,BF=c,求 BE27、如图;在ABC中,BAC=120,AD平分BAC交BC于D 求证:精选文档

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服