ImageVerifierCode 换一换
格式:PPTX , 页数:39 ,大小:187.63KB ,
资源ID:1537282      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1537282.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(英国诺丁汉大学讲义如何估计随机效应模型.pptx)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

英国诺丁汉大学讲义如何估计随机效应模型.pptx

1、MCMC Estimation for Random Effect Modelling The MLwiN experienceDr William J.BrowneSchool of Mathematical SciencesUniversity of NottinghamContentsRandom effect modelling,MCMC and MLwiN.Methods comparison Guatemalan child health example.Extendibility of MCMC algorithms:Cross classified and multiple m

2、embership models.Artificial insemination and Danish chicken examples.Further Extensions.Random effect modelsModels that account for the underlying structure in the dataset.Originally developed for nested structures(multilevel models),for example in education,pupils nested within schools.An extension

3、 of linear modelling with the inclusion of random effects.A typical 2-level model is Here i indexes pupils and j indexes schools.MLwiNSoftware package designed specifically for fitting multilevel models.Developed by a team led by Harvey Goldstein and Jon Rasbash at the Institute of Education in Lond

4、on over past 15 years or so.Earlier incarnations ML2,ML3,MLN.Originally contained classical IGLS estimation methods for fitting models.MLwiN launched in 1998 also included MCMC estimation.My role in team was as developer of MCMC functionality in MLwiN during 4.5 years at the IOE.Estimation Methods f

5、or Multilevel ModelsDue to additional random effects no simple matrix formulae exist for finding estimates in multilevel models.Two alternative approaches exist:1.Iterative algorithms e.g.IGLS,RIGLS,EM in HLM that alternate between estimating fixed and random effects until convergence.Can produce ML

6、 and REML estimates.2.Simulation-based Bayesian methods e.g.MCMC that attempt to draw samples from the posterior distribution of the model.MCMC AlgorithmConsider the 2-level modelMCMC algorithms work in a Bayesian framework and so we need to add prior distributions for the unknown parameters.Here th

7、ere are 4 sets of unknown parameters:We will add prior distributions MCMC Algorithm(2)The algorithm for this model then involves simulating in turn from the 4 sets of conditional distributions.Such an algorithm is known as Gibbs Sampling.MLwiN uses Gibbs sampling for all normal response models.First

8、ly we set starting values for each group of unknown parameters,Then sample from the following conditional distributions,firstly To get .MCMC Algorithm(3)We next sample fromto get ,thento get ,then finallyTo get .We have then updated all of the unknowns in the model.The process is then simply repeate

9、d many times,each time using the previously generated parameter values to generate the next setBurn-in and estimatesBurn-in:It is general practice to throw away the first n values to allow the Markov chain to approach its equilibrium distribution namely the joint posterior distribution of interest.T

10、hese iterations are known as the burn-in.Finding Estimates:We continue generating values at the end of the burn-in for another m iterations.These m values are then average to give point estimates of the parameter of interest.Posterior standard deviations and other summary measures can also be obtain

11、ed from the chains.Methods for non-normal responsesWhen the response variable is Binomial or Poisson then different algorithms are required.IGLS/RIGLS methods give quasilikelihood estimates e.g.MQL,PQL.MCMC algorithms including Metropolis Hastings sampling and Adaptive Rejection sampling are possibl

12、e.Numerical Quadrature can give ML estimates but is not without problems.So why use MCMC?Often gives better estimates for non-normal responses.Gives full posterior distribution so interval estimates for derived quantities are easy to produce.Can easily be extended to more complex problems.Potential

13、downside 1:Prior distributions required for all unknown parameters.Potential downside 2:MCMC estimation is much slower than the IGLS algorithm.The Guatemalan Child Health dataset.This consists of a subsample of 2,449 respondents from the 1987 National Survey of Maternal and Child Helath,with a 3-lev

14、el structure of births within mothers within communities.The subsample consists of all women from the chosen communities who had some form of prenatal care during pregnancy.The response variable is whether this prenatal care was modern(physician or trained nurse)or not.Rodriguez and Goldman(1995)use

15、 the structure of this dataset to consider how well quasi-likelihood methods compare with considering the dataset without the multilevel structure and fitting a standard logistic regression.They perform this by constructing simulated datasets based on the original structure but with known true value

16、s for the fixed effects and variance parameters.They consider the MQL method and show that the estimates of the fixed effects produced by MQL are worse than the estimates produced by standard logistic regression disregarding the multilevel structure!The Guatemalan Child Health dataset.Goldstein and

17、Rasbash(1996)consider the same problem but use the PQL method.They show that the results produced by PQL 2nd order estimation are far better than for MQL but still biased.The model in this situation is In this formulation i,j and k index the level 1,2 and 3 units respectively.The variables x1,x2 and

18、 x3 are composite scales at each level because the original model contained many covariates at each level.Browne and Draper(2004)considered the hybrid Metropolis-Gibbs method in MLwiN and two possible variance priors(Gamma-1(,)and Uniform.Simulation ResultsThe following gives point estimates(MCSE)fo

19、r 4 methods and 500 simulated datasets.Parameter(True)MQL1PQL2GammaUniform0(0.65)0.474(0.01)0.612(0.01)0.638(0.01)0.655(0.01)1(1.00)0.741(0.01)0.945(0.01)0.991(0.01)1.015(0.01)2(1.00)0.753(0.01)0.958(0.01)1.006(0.01)1.031(0.01)3(1.00)0.727(0.01)0.942(0.01)0.982(0.01)1.007(0.01)2v(1.00)0.550(0.01)0.8

20、88(0.01)1.023(0.01)1.108(0.01)2u(1.00)0.026(0.01)0.568(0.01)0.964(0.02)1.130(0.02)Simulation ResultsThe following gives interval coverage probabilities(90%/95%)for 4 methods and 500 simulated datasets.Parameter(True)MQL1PQL2GammaUniform0(0.65)67.6/76.886.2/92.086.8/93.288.6/93.61(1.00)56.2/68.690.4/

21、96.292.8/96.492.2/96.42(1.00)13.2/17.684.6/90.888.4/92.688.6/92.83(1.00)59.0/69.685.2/89.886.2/92.288.6/93.62v(1.00)0.6/2.470.2/77.689.4/94.487.8/92.22u(1.00)0.0/0.021.2/26.884.2/88.688.0/93.0Summary of simulationsThe Bayesian approach yields excellent bias and coverage results.For the fixed effects

22、MQL performs badly but the other 3 methods all do well.For the random effects,MQL and PQL both perform badly but MCMC with both priors is much better.Note that this is an extreme scenario with small levels 1 in level 2 yet high level 2 variance and in other examples MQL/PQL will not be so bad.Exten

23、sion 1:Cross-classified modelsForexample,schoolsbyneighbourhoods.Schoolswilldrawpupilsfrommanydifferentneighbourhoodsandthepupilsofaneighbourhoodwillgotoseveralschools.Nopurehierarchycanbefoundandpupilsaresaidtobecontainedwithinacross-classificationofschoolsbyneighbourhoods:nbhd 1nbhd 2Nbhd 3School

24、1xxxSchool 2xxSchool 3xxxSchool 4xxxxSchoolS1S2S3S4PupilP1P2P3P4P5P6P7P8P9P10P11P12NbhdN1N2N3NotationWithhierarchicalmodelsweuseasubscriptnotationthathasonesubscriptperlevelandnestingisimpliedreadingfromtheleft.Forexample,subscriptpatternijk denotestheithlevel1unitwithinthejthlevel2unitwithinthekthl

25、evel3unit.Ifmodelsbecomecross-classifiedweusethetermclassificationinsteadoflevel.Withnotationthathasonesubscriptperclassification,thatcapturestherelationshipbetweenclassifications,notationcanbecomeverycumbersome.WeproposeanalternativenotationintroducedinBrowneetal.(2001)thatonlyhasasinglesubscriptno

26、matterhowmanyclassificationsareinthemodel.Single subscript notationSchoolS1S2S3S4PupilP1P2P3P4P5P6P7P8P9P10P11P12NbhdN1N2N3inbhd(i)sch(i)111221311422512622723833934102411341234WewritethemodelasWhereclassification2isneighbourhoodandclassification3isschool.Classification1alwayscorrespondstotheclassifi

27、cationatwhichtheresponsemeasurementsaremade,inthiscasepatients.Forpupils1and11equation(1)becomes:Classification diagramsSchoolPupilNeighbourhoodSchoolPupilNeighbourhoodNestedstructurewhereschoolsarecontainedwithinneighbourhoodsCross-classifiedstructurewherepupilsfromaschoolcomefrommanyneighbourhoods

28、andpupilsfromaneighbourhoodattendseveralschools.Inthesinglesubscriptnotationweloseinformationabouttherelationship(crossedornested)betweenclassifications.Ausefulwayofconveyingthisinformationiswiththeclassification diagram.Whichhasonenodeperclassificationandnodeslinkedbyarrowshaveanestedrelationshipan

29、dunlinkednodeshaveacrossedrelationship.Example:Artificial insemination by donor 1901women279donors1328donations12100ovulatorycyclesresponseiswhetherconceptionoccursinagivencycleIntermsofaunitdiagram:DonorWomanCycleDonationOraclassificationdiagram:Model for artificial insemination dataWecanwritethemo

30、delasParameterDescriptionEstimate(se)intercept-4.04(2.30)azoospermia*0.22(0.11)semenquality0.19(0.03)womensage35-0.30(0.14)spermcount0.20(0.07)spermmotility0.02(0.06)inseminationtoearly-0.72(0.19)inseminationtolate-0.27(0.10)womenvariance1.02(0.21)donationvariance0.644(0.21)donorvariance0.338(0.07)R

31、esults:Note cross-classified models can be fitted in IGLS but are far easier to fit using MCMC estimation.Extension 2:Multiple membership modelsWhenlevel1unitsaremembersofmorethanonehigherlevelunitwedescribeamodelforsuchdataasamultiplemembershipmodel.Forexample,Pupilschangeschools/classesandeachscho

32、ol/classhasaneffectonpupiloutcomes.Patientsareseenbymorethanonenurseduringthecourseoftheirtreatment.NotationNotethatnurse(i)nowindexesthesetofnursesthattreatpatientiandw(2)i,j isaweightingfactorrelatingpatientitonursej.Forexample,withfourpatientsandthreenurses,wemayhavethefollowingweights:n1(j=1)n2(

33、j=2)n3(j=3)p1(i=1)0.500.5p2(i=2)100p3(i=3)00.50.5p4(i=4)0.50.50Herepatient1wasseenbynurse1and3butnotnurse2andsoon.Ifwesubstitutethevaluesofw(2)i,j,iandj.fromthetableinto(2)wegettheseriesofequations:Classification diagrams for multiple membership relationshipsDoublearrowsindicateamultiplemembershipre

34、lationshipbetweenclassifications.patientnurseWecanmixmultiplemembership,crossedandhierarchicalstructuresinasinglemodel.patientnursehospitalGPpracticeHerepatientsaremultiplemembersofnurses,nursesarenestedwithinhospitalsandGPpracticeiscrossedwithbothnurseandhospital.Example involving nesting,crossing

35、and multiple membership Danish chickensProductionhierarchy10,127childflocks725houses304farmsBreedinghierarchy10,127childflocks200parentflocksChildflockHouseFarmParentflockAsaunitdiagram:Asaclassificationdiagram:Model and resultsParameterDescriptionEstimate(se)intercept-2.322(0.213)1996-1.239(0.162)1

36、997-1.165(0.187)hatchery2-1.733(0.255)hatchery3-0.211(0.252)hatchery4-1.062(0.388)parentflockvariance0.895(0.179)housevariance0.208(0.108)farmvariance0.927(0.197)Results:Note multiple membership models can be fitted in IGLS and this model/dataset represents roughly the most complex model that the me

37、thod can handle.Such models are far easier to fit using MCMC estimation.Further Extensions/Work in progress1.Multilevel factor models2.Response variables at different levels3.Missing data and multiple imputation4.ESRC grant:Sample size calculations,MCMC efficiency&Model identifiability5.Wellcome Fel

38、lowship grant for Martin GreenMultilevel factor analysis modellingIn sample surveys there are often many responses for each individual.Techniques like factor analysis are often used to identify underlying latent traits amongst these responses.Multilevel factor analysis allows factor analysis modelli

39、ng to identify factors at various levels/classifications in the dataset so we can identify shared latent traits as well as individual level traits.Due to the nature of MCMC algorithms by adding a step to allow for multilevel factor models in MLwiN,cross-classified models can also be fitted without a

40、ny additional programming!See Goldstein and Browne(2002,2005)for more detail.Responses at different levelsIn a medical survey some responses may refer to patients in a hospital while others may refer to the hospital itself.Models that combine these responses can be fitted using the IGLS algorithm in

41、 MLwiN and shouldnt pose any problems to MCMC estimation.The Centre for Multilevel modelling in Bristol are investigating such models as part of their LEMMA node in the ESRC research methods program.I am a named collaborator for the Lemma project.They are also looking at MCMC algorithms for latent g

42、rowth models.Missing data and multiple imputationMissing data is proliferate in survey research.One popular approach to dealing with missing data is multiple imputation(Rubin 1987)where several imputed datasets are created and then the model of interest is fitted to each dataset and the estimates co

43、mbined.Using a multivariate normal response multilevel model to generate the imputations using MCMC in MLwiN is described in chapter 17 of Browne(2003)James Carpenter(LSHTM)has begun work on macros in MLwiN that automate the multiple imputation procedure.Sample size calculationsAnother issue in data

44、 collection is how big a sample do we need to collect?Such sample size calculations have simple formulae if we can assume that an independent sample can be generated.If however we wish to account for the data structure in the calculation then things are more complex.One possibility is a simulation-b

45、ased approach similar to that used in the model comparisons described earlier where many datasets are simulated to look at the power for a fixed sample size.Mousa Golalizadeh Lehi will be joining me in February on an ESRC grant looking at such an approach.A 4th year MMath.student(Lynda Leese)is look

46、ing at the approach for nested models.Efficient MCMC algorithmsIn MLwiN we have tended to use the simplest,most generally applicable MCMC algorithms for multilevel models.For particular models there are many approaches that may improve the performance/mixing of the MCMC algorithm.We will also invest

47、igate some of these methods in the ESRC grant.Browne(2004)looked at some reparameterisation methods for cross-classified models in a bird nesting dataset.A second 4th year MMath.student(Francis Bourchier)is looking at MCMC methods based around the IGLS representation of nested models which are inter

48、esting.Model IdentifiabilityThe final part of the ESRC grant is to look at whether a model is identifiable/estimable given a particular set of data.Cross-classified datasets where there are few level 1 units per higher level unit can result in each observation being factored into several random effe

49、cts with very few observations being used to estimate each random effect.We are interested in establishing whether we can really estimate all parameters in such models.An example where we cant would be a dataset of patients who are attended by doctors in wards.Now if there is only one doctor per war

50、d and likewise one ward per doctor then we cannot tease out doctor and ward effects.Again this work was motivated by a bird nesting dataset.Wellcome FellowshipMartin Green has been successful in obtaining 4 years of funding from Wellcome to come and work with me.The project is entitled Use of Bayesi

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服