ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:671.24KB ,
资源ID:1502104      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1502104.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(勾股定理知识点及典型例题.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

勾股定理知识点及典型例题.doc

1、实用标准文案八下第18章 勾股定理勾股定理知识点导航一、勾股定理: 1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2b2c2. 即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2b2c2,那么这个三角形是直角三角形。2. 勾股数:满足a2b2c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的

2、三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。(经典直角三角形:勾三、股四、弦五) 其他方法:(1)有一个角为90的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。 用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2a2b2,则ABC是以C为直角的三角形;若a2b2c2,则此三角形为钝角三角形(其中c为最大边);若a2b2c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。 (3)在直角三角形中,如

3、果一条直角边等于斜边的一半,那么这条直角边所对的角等于30。5. 勾股定理的作用: (1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。(3)用于证明线段平方关系的问题。(4)利用勾股定理,作出长为的线段6、2、勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法7、错误的描述方法:“当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形勾股定理:(一)结合三角形:1.已知ABC的三边、满足,则ABC为 三角形2.在ABC中,若=(+)(-),则ABC是 三角形,且 3.在ABC中,AB=13,AC=15,高AD=12,则BC的长为 4、已知 与互为相反

4、数,试判断以、为三边的三角形的形状。5、.已知:在ABC中,三条边长分别为、,=,=2,=(1) 试说明:C=。6.若ABC的三边、满足条件,试判断ABC的形状。7.已知则以、为边的三角形是 (二)、实际应用:1. 梯子滑动问题:(1)一架长2.5的梯子,斜立在一竖起的墙上,梯子底端距离墙底0.7(如图),如果梯子的顶端沿墙下滑0.4,那么梯子底端将向左滑动 米第1题图 第2题图 第3题图(2)如图,一个长为10米的梯子,斜靠在墙面上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离 1米,(填“大于”,“等于”,或“小于”)(3)如图,梯子AB斜靠在墙面上,

5、ACBC,AC=BC,当梯子的顶端A沿AC方向下滑x米时,梯足B沿CB方向滑动y米,则x与y的大小关系是( )A. X+y B. xy C. x y D. 不能确定(4)小明想知道学校旗杆的高度,他发现旗杆上的绳子吹到地面上还多1 m,当他把绳子的下端拉开5米后,发现绳子下端刚好触到地面,试问旗杆的高度为 米 2. 直角边与斜边和斜边上的高的关系:直角三角形两直角边长为a,b,斜边上的高为h,则下列式子总能成立的是( )A. B. C. D. 变:如图,在RtABC中,ACB=90,CDAB于D,设AB=c,AC=b,BC=a,CD=h。求证:(1)(2)(3)以为三边的三角形是直角三角形试一

6、试:(1)只需证明,从左边推到到右边 (2)(3),注意面积关系的应用3. 爬行距离最短问题:1.如图,一个无盖的正方体盒子的棱长为10cm,得到处有一只昆虫甲,在盒子的内部有一只昆虫乙(盒壁的 忽略不计)(1)假设昆虫甲在顶点处静止不动,如图a,在盒子的内部我们先取棱的中点E,再连结AE、,昆虫乙如果沿途径爬行,那么可以在最短的时间内捕捉到昆虫甲,仔细体会其中的道理,并在图b中画一条路径,使昆虫乙从顶点A沿这条路爬行,同样可以在最短的时间内捕捉到昆虫甲。(2)如图b,假设昆虫甲从点以1 厘米/秒的速度在盒子的内部沿向下爬行,同时昆虫乙从顶点A以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要

7、多少时间才能捕捉到昆虫甲?试一试:对于(2),当昆虫甲从顶点沿棱向顶点C爬行的同时,昆虫乙可以沿不同的路径爬行,利用勾股定理建立时间方程,通过比较得出昆虫乙捕捉到昆虫甲的最短时间2.如图,一块砖宽AN=5,长ND=10,CD上的点F距地面的高FD=8,地面上A处的一只蚂蚁到B处吃食,要爬行的最短路线是 cm3.如图,是一个三级台阶,它的每一级的长、宽、高分别为20、3、2,A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程是 分米?4. 如图,一只蚂蚁沿边长为a的正方体表面从点A爬到点B,则它走过的路程最短为( )A. B. C. D. 5、如

8、图,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击结果,壁虎的偷袭得到成功,获得了一顿美餐请问壁虎至少要爬行多少路程才能捕到害虫?(取3)6、如图为一棱长为3cm的正方体,把所有面都分为9个小正方形,其边长都是1cm,假设一只蚂蚁每秒爬行2cm,则它从下地面A点沿表面爬行至右侧面的B点,最少要花几秒钟?7葛藤是一种刁钻的植物,它自己腰杆不硬,为了争夺雨露阳光,常常饶着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线,总是沿着

9、短路线盘旋前进的。难道植物也懂得数学吗?如果阅读以上信息,你能设计一种方法解决下列问题吗?如果树的周长为3cm,绕一圈升高4cm,则它爬行路程是多少厘米?如果树的周长为8cm,绕一圈爬行10cm,则爬行一圈升高多少厘米?如果爬行10圈到达树顶,则树干高多少厘米?8、如图,A、B是笔直公路l同侧的两个村庄,且两个村庄到直路的距离分别是300m和500m,两村庄之间的距离为d(已知d2=400000m2),现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小。问最小是多少?4、实际问题1. 小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树离地面的高度是

10、米。2. 如图,山坡上两株树木之间的坡面距离是4米,则这两株树之间的垂直距离是_米,水平距离是 米。 3. 如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是 。4. 如图,欲测量松花江的宽度,沿江岸取B、C两点,在江对岸取一点A,使AC垂直江岸,测得BC50米,B60,则江面的宽度为 。 5、如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校

11、受到影响的时间为多少?5、求边长:1.如图所示,在四边形ABCD中,BAD=90,DBC=90,AD=3,AB=4,BC=12,求CD。 6、方向问题:1. 有一次,小明坐着轮船由A点出发沿正东方向AN航行,在A点望湖中小岛M,测得MAN30,当他到B点时,测得MBN45,AB100米,你能算出AM的长吗?2.一轮船在大海中航行,它先向正北方向航行8 km,接着,它又掉头向正东方向航行15千米 此时轮船离开出发点多少km? 若轮船每航行1km,需耗油0.4升,那么在此过程中轮船共耗油多少升?7、折叠问题:1.如图,矩形纸片ABCD的长AD=9,宽AB=3,将其折叠,使点D与点B重合,那么折叠后

12、DE的长是多少?2.如图,在长方形ABCD中,将ABC沿AC对折至AEC位置,CE与AD交于点F。(1)试说明:AF=FC;(2)如果AB=3,BC=4,求AF的长3.如图,在长方形ABCD中,DC=5,在DC边上存在一点E,沿直线AE把ABC折叠,使点D恰好在BC边上,设此点为F,若ABF的面积为30,求折叠的AED的面积4.如图所示,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗? 5.如图,有一张直角三角形纸片,两直角边AC=6,BC=8,将ABC折叠,使点B与点A重合,折痕为DE,则CD等于( )A.

13、 B. C. D. 6、如图,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,点B恰好落在CD边上的点G处,求BE的长.8、利用勾股定理测量长度如图,水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.9、旋转问题1、如图,P是等边三角形ABC内一点,PA=2,PB=,PC=4,求ABC的边长。2、如图1-3-11,有一块塑料矩形模板ABCD,长为8cm,宽为4cm,将你手中足够大的直角三角板 PHF 的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时 AP 的长;若不能,请说明理由.再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH 始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP的长;若不能,请你说明理由.3、如图,正方形ABCD中,E是BC边上的中点,F是AB上一点,且,那么DEF是直角三角形吗?为什么?文档

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服