ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:145.37KB ,
资源ID:1498281      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1498281.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(数形结合思想例题分析.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数形结合思想例题分析.doc

1、数形结合思想例题分析 一、构造几何图形解决代数与三角问题: 1、证明恒等式: 例1 已知、、、均为正数,且 求证: 分析:由自然联想到勾股定理。由可以联想到射影定理。从而可以作出符合题设条件的图形(如图)。对照图形,由直角三角形面积的两种算法,结论的正确性一目了然。 证明:(略) 小结:涉及到与平方有关的恒等式证明问题,可构造出与之对应的直角三角形或圆,然后利用图形的几何性质去解决恒等式的证明问题。 2、证明不等式: 例2 已知:0<<1,0<<1. 求证 证明:如图,作边长为1的正方形ABCD,在AB上取点E,使AE=;在AD上取点G,使AG=,过E、G分别作E

2、F//AD交CD于F;作GH//AB交BC于H。设EF与GH交于点O,连接AO、BO、CO、DO、AC、BD. 由题设及作图知△、△、△、△均为直角三角形,因此 且 由于 所以: 当且仅当时,等号成立。 小结:在求证条件不等式时,可根据题设条件作出对应的图形,然后运用图形的几何性质或者平面几何的定理、公理去建立不等式使结论获证。 3、求参数的值或参数的取值范围: 例3 若方程 (>0)的两根满足:<1,1<<3,求的取值范围。 解析:画出与方程对应的二次函数 (>0)的草图: 由图可知:当=1时,<0; 当=3时,>0. 即 <0 ; >0.

3、 解得:<<1. 例4 若关于的不等式 的解集仅有一个元素,求的值。 解:如图:在同一坐标系内,作出与的图象。题设条件等价于抛物线在直线与之间的带状区域仅有一个交点,且抛物线开口向上。由图形的直观性质可知:这个交点只能在直线上,故方程组 仅有一组解。 即 小结:对于含参方程(不等式),可将其与对应的函数(图象)联系起来,运用数形结合思想,去揭示问题中所蕴含的几何背景,往往能为解题提供清晰的思路。 4、求最值问题: 例5 已知、均为正数,且求的最小值。 解:如图,作线段AB=2,在AB上截取AE=, EB=,过A作ACAB,且AC=2,过B作BDAB,且BD

4、1。由勾股定理:CE=,BD=,原题即求CE+ED的最小值。 又如图,延长CA至G,使AG=AC,连接GE,由三角形两边之和大于第三边,则G、E、D三点共线时,GE+ED=DG最短。作出图形,延长DB至F,使BF//AG且BF=AG,连接GF. 则在Rt△DGF中,DF=1+2=3,GF=AB=2 CE+DE的最小值是 即的最小值是 小结:此题由式子特点联想勾股定理,构造图形解决问题。 二、用代数与三角方法解决几何问题: 例6 如图,在△ABC中,AB>AC,CF、BE分别是AB、AC边上的高。试证: 证法一:(三角法)因为, 证法二:(代数法)由AB>AC>CF,AB>

5、BE 及S△ABC > > ,=. 综上: 小结:以上两种证明方法,分别采用了三角法与代数法,较之纯几何证法来,易于想到。 例7 如图,在正△ABC的三边AB、BC、CA上分别有点D、E、F.若DEBC,EFAC,FDAB同时成立,求点D在AB上的位置. A D E F C B 分析:先假设符合条件的点 D、E、F已经作出,再利用已知条件,寻找线段与角之间的数量关系,列出含有待求量的等式(方程),以求其解。 解:设AB=1,AD= 因为△ABC为正三角形, 且DEBC,EFAC,FDA

6、B, 故 , , , 而 ,即 解得: 即点D位于AB边上分点处. A y z x P F E D C B 小结:几何中存在着这样一类问题,即几何图形中的某些点的位置或线段的长度或角度的大小不能依题意画出来,只有根据已知条件求出某一些量时,图形才能画出。而求那些量的方法,常常是通过列方程(组),即转化为代数方程求解。 例8 如图,△ABC三边的长分别是BC=17,CA=18,AB=19. 过△ABC内的点P向△ABC的三边分别作垂线PD、PE、PF(D、E、F为垂足). 若求:的长. 解:设 , , ,则 , , 连接PA、PB、PC. 在Rt△PBD和Rt△PFB中, 同理: 将以上三式相加,得: ……(1) 又已知: …………(2) 由(1)(2)得: 即 即

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服