ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:40.51KB ,
资源ID:1497219      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1497219.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(初中统计与概率知识点精编.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初中统计与概率知识点精编.doc

1、 (一)统计篇 主要知识点(三种统计图,科学计数法,近似数,有效数字,平均数,众数,中位数,普查,抽查,频数,频率,极差,方差,标准差)一、生活中的数据(一)(七年级上册第六章)三种统计图略二、生活中的数据(二)(七年级下册第三章)1.科学计数法:一个绝对值小于1的数也可以用科学记数法表示成的形式,其中,n是负整数。技巧:n的绝对值等于这个数的左边第一个非零数字前面的零的个数。一百万1106 一亿11082.近似数和有效数字:目标:取近似数,能指出近似数的有效数字。精确数是与实际完全符合的数,近似数是与实际非常接近的数。有时我们根据具体情况,采用四舍五入法选择一个数的近似数。注意:用四舍五入法

2、取近似数时,很容易将小数点末尾的零去掉,一定要注意精确到的数位(及四舍五入到的数位)。如0.73049四舍五入到千分位是0.730,注意不要去掉末尾的零。四舍五入到哪一位,就说这个近似数精确到哪一位。 对于一个近似数,从左边第一个不是0的数字起,到精确的数位(即四舍五入到的数位)止,所有的数字都叫做这个数的有效数字。三、数据的代表(八年级上册第八章)1.平均数:目标:会求一组数据的平均数与加权平均数我们常用平均数(算术平均数)表示一组数据的“平均水平”。在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”,这样的平均数叫做加权平均数

3、。例如;你的小测成绩是80分,期末考成绩是90分,老师要计算总的平均成绩,就按照小测40%、期末成绩60%的比例来算,所以你的平均成绩是:8040%+9060%=86学校食堂吃饭,吃三碗的有 人,吃两碗的有 y 人,吃一碗的 z 人。平均每人吃多少?(3 + 2y + 1z)( + y + z)这里x、y、z分别就是权数值,“加权”就是考虑到不同变量在总体中的比例份额。2.中位数与众数:目标:能选用适当的数表示平均水平 (1)一般地,个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。一组数据中出现次数最多的那个数据叫做这组数据的众数。(2)平均数、

4、中位数、众数(数据的“三个代表”)的特征:平均数、中位数和众数都是数据的代表,它们刻画了一组数据的“平均水平”。计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但它易受极端值的影响。中位数的优点是计算简单,受极端值的影响较小,所以当一组数据中个别数据的变化较大时,可用中位数来描述“平均水平”,但不能充分利用所有数据的信息。一组数据中某些数据多次重复出现时,众数往往是人们尤为关心的一个量。但各个数据重复的次数大致相等时,众数往往没有特别意义。四、数据的收集与处理(八年级下册第五章)1.调查方式:目标:学会选择适当的调查方式。 (1)为了一定的目的而对考

5、察对象进行的全面调查称为普查。其中要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。(2)从总体中抽到部分个体进行调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本,样本的数量称为样本容量。2.数据的收集:为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性。3.频数与频率:(1)在数据统计中,每个对象出现的次数称为频数,而每个对象出现的次数与总次数的比值称为频率。(2)频数分布直方图绘制频数分布直方图的一般步骤:分组。将收集的数据分成若干组。一般地,数据越多,分的组数越多。当数据在100个以内时,通常分成512组。决定各组的分点(即各组起点数和终点数),相邻

6、两组之间不能交叉。累计出各组的频数,列出频数分布表。在水平方向取出组数相同的等份数作为宽,从小到大将各组数排列起来;将竖直方向分成适当的等份数(能表示出最多和最少的频数),以各组相应的频数为高,画出各个小长方形,即得频数分布直方图。注意:在画频数分布直方图时,首先要列出频数分布表,在分组时要注意组数适当,组距相等。分组要不空、不重、不漏。不空,即该组必须有数据;不重,即一个数据只能在一个组中;不漏,即不能漏掉某一个数据。(3)频数折线图为了更好的刻画数据的总体规律,我们还可以在得到的频数分布图上取点(通常是各组的中点)、连线,得到频数折线图。4.数据的波动:目标:了解极差、方差、标准差(“三差

7、”)的意义及作用;会用样本方差、标准方差估计总体的方差、标准差;体会数据波动对决策的作用。实际生活中,除了关心数据的“平均水平”外,人们往往还关注数据的离散程度,即它们相对于“平均水平”的偏离情况。数学上,数据的离散程度可以用极差,方差或标准差来刻画。(1)极差是指一组数据中最大数据与最小数据的差。(2)方差是各个数据与平均数之差的的平方的平均数。 (3)标准差就是方差的算术平方根。 (二)概率一、可能性(七年级上册第七章)1.一定摸到红球吗(1)确定事件与不确定事件生活中,有些事情我们事先能肯定它一定会发生,这些事情称为必然事件。有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件。

8、必然事件与不可能事件都是确定的。生活中也有许多事情我们事先无法肯定它会不会发生,这些事情称为不确定事件,也称为随机事件。(2)不确定事件发生的可能性在教材的摸球活动(在装有红球与黄球的盒中分组摸球)中,每次摸到的球的颜色是不确定的。如果红球与黄球的数量不等,那么摸到红球的可能性与摸到黄球的可能性是不一样的。一般地,不确定事件发生的可能性是有大小的。三、频率与概率(九年级上册第六章)1.频率与概率:能用树状图和列表法计算事件发生的概率。(1)频率与概率的关系:随机事件发生的频率等于该事件发生的频数除以试验总次数,当试验次数很多时,随机事件发生的频率会稳定在相应的概率附近。因此,我们可以通过多次试

9、验,用一个随机事件发生的频率来估计这一事件发生的概率。频率并不等于概率,频率与概率在实验中可以非常接近,但不一定相等。(2)列表法与树状图法求概率:列表法:当事件涉及两个因素,并且可能出现的结果数目较多时,用表格不重不漏地列出所有可能的结果,这种方法叫列表法。树状图法:当事件涉及有两个以上的因素时,用树状图的形式不重不漏地列出所有可能的结果的方法叫树状图法。2.投针试验投针试验中,针的长度小于平行线间的距离,针与平行线相交与不相交的可能性不一定相同,所以不能用图表法或树状图来求针与平行线相交或不相交的概率,可以用试验的方法来估计它们的概率。4.池塘里有多少条鱼抽样调查。估计池塘中的鱼有多少,可

10、以先捞出若干条鱼,将它们做上标记,然后再放回池塘。经过一段时间后,再从中随机捞出若干条鱼,并以其中有标记的鱼的比例作为整个池塘中有标记的鱼的比例,据此估计出鱼塘中鱼的数量。四、统计与概率(1)运用图表可以使数据表达更清晰、直观,在实际运用时,要注意图表的选择,恰当的图表能发挥事半功倍的作用,不恰当的图表不仅难以达到效果,有时还给人以误导。折线统计图能清楚的反映事物的变化情况,在比较两个统计量的变化趋势时,应注意这两者的纵横坐求的一致性,否则会给人以误导。扇形统计图的优点是可以清楚地告诉我们各部分数量占总数的百分比,缺点是不能从统计图上看出具体的数量,所以我们不能利用不同的扇形统计图直接比较两个数量的大小。条形统计图能清楚地表示每个项目的具体数目 ,为了使得所绘条形统计图更为直观、清晰,纵坐标上的数值应从0开始。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服