ImageVerifierCode 换一换
格式:PDF , 页数:20 ,大小:300.40KB ,
资源ID:1490680      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1490680.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     索取发票    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(给定片段数的树、单圈图和双圈图的极值p-谱半径.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

给定片段数的树、单圈图和双圈图的极值p-谱半径.pdf

1、第 43 卷第 3 期2023 年 9 月数学理论与应用MATHEMATICAL THEORY AND APPLICATIONSVol.43No.3Sep.2023The Extremalpspectral Radii of Trees,Unicyclic and Bicyclic Graphswith Given Number of SegmentsQiu MairongHe Xiaocong(School of Mathematics and Statistics,Central South University,Changsha 410083,China)AbstractLet G be

2、 a finite and simple graph.A walk S is called a segment of G if the endpoints(not necessarilydistinct)of S are of degree 1 or at least 3,and each of the rest vertices is of degree 2 in G.In this paper,we determinethe graphs that maximize the pspectral radius for p 1 among trees,unicyclic and bicycli

3、c graphs with given orderand number of segments,respectively.Key wordspspectral radiusTreeUnicyclic graphBicyclic graphSegment给定片段数的树、单圈图和双圈图的极值p谱半径邱买容贺晓聪*(中南大学数学与统计学院,长沙,410083)摘要设 G 是一个有限简单图.S 是 G 的一条途径.如果 S 的端点(可以相同)在 G 中的度是 1 或者至少是 3,且其他的顶点在 G 中的度都是 2,则称 S 为 G 的一个片段.本文对大于 1 的实数 p,分别确定固定阶数和片段数的树、

4、单圈图和双圈图的最大 p谱半径,并刻画对应的极图.关键词p谱半径树单圈图双圈图片段doi:10.3969/j.issn.1006 8074.2023.03.0031IntroductionAssume all graphs in this paper are finite and simple.Let G be a graph with vertex set V(G)=v1,v2,vn and edge set E(G).We follow the notation and terminologies in 1 except otherwisestated.If two vertices vi

5、and vjare adjacent,we write vi vj,otherwise,write vi vj.The adjacencymatrix of G is defined as A(G)=(aij)nnwhere aij=1 if vi vj,and aij=0 otherwise.Let dG(vi)be the degree of viand NG(vi)be the set of neighbors of viin G.As usual,denote by(G)the maximumdegree in G.The distance between two vertices u

6、 and v,denoted by d(u,v),is the length of a shortestpath between u and v.If H is a subgraph of G,let d(u,H)=mind(u,v)|v V(H).Denote by Pnand Cnthe path and the cycle on n vertices,respectively.k paths Pl1,Pl2,Plkaresaid to have almost equal lengths if|li lj|1 for 1 i,j k.A vertex of degree 1 in a gr

7、aph is saidThisworkissupportedbytheFundamentalResearchFundsfortheCentralUniversitiesofCentralSouthUniversity(No.2021zzts0034)Corresponding author:He Xiaocong Email:收稿日期:2022 年 10 月 31 日62数学理论与应用to be a pendant vertex and a vertex of degree at least 3 is called a branching vertex.An induced path with

8、vertices u1,u2,utis called a pendant path of G,if dG(u2)=dG(ut1)=2 and dG(ut)=1(note that there is no requirement on the degree of u1).A walk is a sequence of vertices u1,u2,ukofG such that ui1 uifor i=2,k,where the first vertex u1and last vertex ukare called endpoints.A walk S is a segment of a gra

9、ph if the endpoints(not necessarily distinct)of S are of degree 1 or at least3,and each of the rest vertices is of degree 2 in the graph.Let m=|E(G)|.If G is connected and m=n+c1,then G is called a ccyclic graph.Especially,if c=0,1 and 2,then G is called a tree,unicyclic graph and bicyclic graph,res

10、pectively.For c 1,Thebase of a ccyclic graph G,denoted byG,is the minimal ccyclic subgraph of G.It is easy to know thatG is the unique ccyclic subgraph of G containing no pendant vertices,while G can be obtained fromGby attaching trees to some vertices ofG.The pspectral radius was introduced for uni

11、form hypergraphs by Keevash,Lenz and Mubayi in 10andsubsequentlystudiedin5,8,17,18.ForasimplegraphG,letx=(xvi)Rn,wherexvicorrespondstothevertexvi.ThequadraticformofGisdefinedasPG(x):=2vivjE(G)xvixvj=xTA(G)x.Usingthe definition of quadratic form of graphs,for any real number p 1,the pspectral radius

12、of G is definedas(p)(G)=maxxp=1PG(x)=maxxp=12vivjE(G)xvixvj.A vector x Rnsatisfying xp=1 and(p)(G)=PG(x)is called an eigenvector to(p)(G).Forany p 1,if x is a vector such that xp=(ni=1|xvi|p)1p=1 and(p)(G)=PG(x),then thevector x=(|xvi|)also satisfies xp=1,and so(p)(G)=PG(x)PG(x)(p)(G)implies that(p)

13、(G)=PG(x).Therefore,there is always a nonegative vector x such that xp=1 and(p)(G)=PG(x).Let x be an eigenvector to(p)(G).If p 1,by Lagranges method,one can show that(p)(G)xp1vk=viNG(vk)xvifor k=1,2,n,which is called the eigenequation of(p)(G)for the vertex vk.The pspectral radius(p)(G)is a multifac

14、eted parameter,as(1)(G)/2 is the Lagrangian of G(see 19).Especially,(2)(G)is the usual spectral radius introduced by Cooper and Dutle 4,andlimp(p)(G)=2|E(G)|(see 17).The investigation on the spectral radius of graphs is an importanttopic in the theory of graph spectra.Recently,the problem concerning

15、 graphs with maximal or minimalspectral radius of a given class of graphs has been studied extensively.Brualdi and Solheid 2 studiedthe spectral radius of connected graphs.Guo 7 determined graphs with the largest spectral radius amongall the unicyclic graphs and all bicyclic graphs on n vertices and

16、 k pendant vertices,respectively.Lin andZhou 13 obtained the structure of trees that maximize the distance spectral radius among trees with givenorder and number of segments.Lin and Song 16 considered the family of all trees with given number ofsegment sequences and proved that the generalized star

17、minimizes the Wiener index.It should be notedthat extremal problems for(p)(G)mainly focus on hypergraphs(see 4,5,8,9,11,17,18).Kang,Liu,给定片段数的树、单圈图和双圈图的极值 p谱半径63Lu and Wang 8 characterized the 3uniform hypergraphs with maximum pspectral radius for p 1among the BergeG hypergraphs when G is a path,a c

18、ycle or a star.For more advances in research onspectral radius of graphs,we refer the readers to 3,6,7,12 15.Let k be the number of segments in G and be the number of vertices of degree 2 in G.If S is asegment of G,we write S G.Denote the length of a segment S by lSand the number of vertices ofdegre

19、e 2 in S by S.It is easy to know thatSGlS=m(G)and S=lS 1.Then=SGS=SG(lS 1)=SGlS k=m(G)k.Therefore,in the class of ccyclic nvertex graphs,as long as the number of segments of graphs is given,the number of vertices of degree 2 is determined.Based on this observation,in this paper,we determinethe struc

20、ture of trees,unicyclic and bicyclic graphs attaining the maximum pspectral radius with givennumber of segments,respectively.Let G(n,c,k),T(n,k),U(n,k)and B(n,k)be the set of ccyclic graphs,trees,unicyclic graphs andbicyclic graphs with n vertices and k segments,respectively.Obviously,T(n,1)=Pnand T

21、(n,0)=T(n,2)=U(n,0)=Cnand U(n,1)=B(n,0)=B(n,1)=.Thus,we only need to considertrees in T(n,k)for 3 k n1,unicyclic graphs in U(n,k)for 2 k n,bicyclic graphs in B(n,k)for 2 k n+1.Let Tn,kbe an nvertex tree with exactly one branching vertex formed by identifying one endvertexof each of the k paths with

22、almost equal lengths(see Figure 1 for it and all the following graphs).Let(i,j,k)be an nvertex unicyclic graph obtained from C3by attaching i,j and k pendant vertices to eachvertex of C3,respectively.We write knfor a unicyclic graph on n vertices obtained from C3by attachingk paths of almost equal l

23、engths to one vertex.Let Bbe a bicyclic graph with 4 vertices and Bbe abicyclic graph with 5 vertices and exactly one branching vertex.Let Bkbe a bicyclic graph obtained byattaching k pendant paths of almost equal lengths to one vertex of degree 3 in B.Let Bkbe a bicyclicgraph obtained by attaching

24、k pendant paths of almost equal lengths to the vertex of degree 4 in B.LetH1be attained from Bby attaching k7 pendant vertices to one vertex of degree 3 of B,and attachinga pendant vertex to the vertices of degree 2 in B,respectively.Let H2be attained from Bby attachingk 5 pendant vertices to one ve

25、rtex of degree 3 of B,and attaching a pendant vertex to one vertex ofdegree 2 in B.We can now state our main results.Theorem 1.1Let p 1,3 k n 1 and T T(n,k).Then(p)(T)1.For any U U(n,k),we have(1)if n=k and k 6,then(p)(U)(p)(k 5,1,1),unless U=(k 5,1,1)(2)if n=k+1 and k 4,then(p)(U)(p)(k 3,1,0),unles

26、s U=(k 3,1,0)(3)if n k+2 and k 2,then(p)(U)1.For any B B(n,k),we have(1)if n=k 1 and k 7,then(p)(B)(p)(H1),unless B=H1(2)if n=k and k 5,then(p)(B)(p)(H2),unless B=H2(3)if n=k+1 or k+2 and k 4,then(p)(B)(p)(Bk3),unless B=Bk3(4)if n k+3 and k 4,then(p)(B)max(p)(Bk2),(p)(Bk3),unless either B=Bk2or B=Bk

27、3(5)if n 6 and k=3,then(p)(B)(p)(B1),unless B=B1(6)ifn 5andk=2,then(p)(B)1 and x Sn1p,+satisfies the equationsxp1vk=viNG(vk)xvi,k=1,2,nfor =(p)(G),then xv1,xv2,xvnare positive(b)If p 2,then there is a unique positive eigenvector x to(p)(G)(c)If p 2 and a vector x Sn1p,+satisfies the above equations

28、for some,then =(p)(G).给定片段数的树、单圈图和双圈图的极值 p谱半径65Lemma 2.2(8)Let p 1 and G be a connected graph.Let u,v be two vertices of G andv1,v2,vs N(v)N(u)(1 s dG(v).Let x=(x1,x2,xn)Tbe a nonegative eigenvectorof(p)(G)with xp=1,where xicorresponds to the vertex vi(i=1,2,n).Let Gbe the graphobtained from G by de

29、leting the edges vviand adding the edges uvi,1 i s.If xu xv,then(p)(G)(p)(G).Furthermore,if p 1,then(p)(G)(p)(G(u;k+1,s 1)for p 1.Suppose a,b are two adjacent vertices of G with dG(a)2 and dG(b)2.Let G(1)(k,s)be thegraph obtained from G by attaching a pendant path of length k at vertex a and attachi

30、ng a pendant path oflength s at vertex b,respectively.Similar to the result of Lemma 2.3,we haveLemma 2.4Let G be a connected graph.If k s 1,then(p)(G(1)(k,s)(p)(G(1)(k+1,s 1)for p 1.Proof Suppose(p)(G(1)(k,s)(p)(G(1)(k+1,s 1).Let x be a positive eigenvector withxp=1 corresponding to(p)(G(1)(k+1,s 1

31、).Let au1ukuk+1and bv1vs2vs1be twopendant paths at a and b of lengths k+1 and s 1 in G(1)(k+1,s 1),respectively.For convenience,let u0=a,v0=b.We will prove by induction thatxuki xvsi1,i=0,1,s 1.For i=0,if xuk xvs1,let G1=G(1)(k+1,s 1)ukuk+1+vs1uk+1.Note thatG1=G(1)(k,s).By Lemma 2.2,we have(p)(G(1)(

32、k,s)=(p)(G1)(p)(G(1)(k+1,s 1),which is a contradiction.Hence,xuk xvs1.For i 1,suppose xuk(i1)xvs1(i1).We will show that xuki xvs1i.Let G2=G(1)(k+1,s1)ukiuk(i1),vsi1vsi+vsi1uk(i1),ukivsi.Clearly,G2=G(1)(k,s).Since0 (p)(G(1)(k,s)(p)(G(1)(k+1,s 1)=(p)(G2)(p)(G(1)(k+1,s 1)2vwE(G2)xvxw 2vwE(G(1)(k+1,s1)x

33、vxw=2(xuk(i1)xvsi)(xvsi1 xuki),66数学理论与应用by the induction assumption,we obtain xuki xvs1i.If xuki=xvs1i,then(p)(G2)=(p)(G(1)(k+1,s 1)and x is also an eigenvector of(p)(G2).Using the eigenequations for uki,we have0=(p)(G2)(p)(G(1)(k+1,s 1)xp1uki=xvsi xuk(i1)xvs1i.So,xuki xvs1ifor i=0,1,s 1.In particul

34、ar,xuk(s1)xv0=xb.Case 1 k s 1.Note that uks+1 a.Let G3=G(1)(k+1,s 1)ua|u NG(a)b ub|u NG(b)a+uuks|u NG(a)b+uuks+1|u NG(b)a.Clearly,G3=G(1)(k,s).For convenience,let =uNG(a)bxu,and =uNG(b)axu.By calculation,we have0 (p)(G(1)(k,s)(p)(G(1)(k+1,s 1)=(p)(G3)(p)(G(1)(k+1,s 1)2(xuks+1 xb)+(xuks xa).Since 0,0

35、 and(xuks+1 xb)0,we obtain xuks xa xuks.Let G4=G(1)(k+1,s1)uksuks+1,abub|u NG(b)a+uks+1a,uksb+uuks+1|u NG(b)a.Clearly,G4=G(1)(k,s).We have0 (p)(G(1)(k,s)(p)(G(1)(k+1,s 1)=(p)(G4)(p)(G(1)(k+1,s 1)2(xaxuks+1+xbxuks xaxb xuksxuks+1)+2(xuks+1 xb)2(xaxuks+1+xbxuks xaxb xuksxuks+1)=2(xuks+1 xb)(xa xuks)0,

36、which is a contradiction.Case 2 k=s.Note that xuks+1=xu1 xb.Let G5=G(1)(k+1,s1)ub|u NG(b)a+uu1|u NG(b)a.Clearly,G5=G(1)(k,s).By Lemma 2.2,we have(p)(G(1)(k,s)=(p)(G5)(p)(G(1)(k+1,s 1),which is a contradiction.This completes the proof.Suppose a,b,w are three vertices of G such that dG(a)2,dG(b)2,dG(w

37、)=2,and a w,b w,a b.Let G(2)(k,s)be the graph obtained from G by attaching a pendant path of length k atvertex a and attaching a pendant path of length s at vertex b,respectively.给定片段数的树、单圈图和双圈图的极值 p谱半径67Lemma 2.5Let G be a connected graph.If k1 s 1,then(p)(G(2)(k,s)(p)(G(2)(k+1,s 1)for p 1.Proof Su

38、ppose(p)(G(2)(k,s)(p)(G(2)(k+1,s 1).Let x be a positive eigenvector withxp=1 corresponding to(p)(G(2)(k+1,s 1).Let au1ukuk+1and bv1vs2vs1be twopendant paths at a and b of lengths k+1 and s 1 in G(2)(k+1,s 1),respectively.For convenience,let u0=a,v0=b.Similarly,as the proof of Lemma 2.4,we have xuks+

39、1 xv0=xb.Case 1 k s 2.Note that uks a.Let G1=G(2)(k+1,s 1)ua|u NG(a)w ub|u NG(b)w+uuks1|u NG(a)w+uuks+1|u NG(b)w.Clearly,G1=G(2)(k,s).For convenience,let =uNG(a)wxuand =uNG(b)wxu.By calculation,we have0 (p)(G(2)(k,s)(p)(G(2)(k+1,s 1)=(p)(G1)(p)(G(2)(k+1,s 1)2(xuks1 xa)+2(xuks+1 xb).Since 0,0,we have

40、 xa xuks1.We proceed by considering the following two subcases.Subcase 1.1 xw xuks.Let G2=G(2)(k+1,s1)uksuks+1,wbub|u NG(b)w+uks+1w,uksb+uuks+1|u NG(b)w.Clearly,G2=G(2)(k,s).However,(p)(G2)(p)(G(2)(k+1,s 1)2(xuks+1 xb)+2(xuks+1 xb)(xw xuks)0,which contradicts to our assumption.Subcase 1.2 xw 0,which

41、 also contradicts to our assumption.Case 2 k=s+1.Note that xu2=xuks+1 xb.Let G4=G(2)(k+1,s1)ub|u NG(b)w+uu2|u NG(b)w.Clearly,G4=G(2)(k,s).By Lemma 2.2,we have(p)(G(2)(k,s)=(p)(G4)(p)(G(2)(k+1,s 1),which is a contradiction.This completes the proof.Lemma 2.6Let G be a connected graph with uv E(G)and d

42、G(u),dG(v)2.Suppose u and vhave no common neighbors.Let Gbe the graph obtained from G by deleting the edge uv,identifying uand v as a new vertex w and attaching a pendant vertex to w.Then for p 1(p)(G)(p)(G).68数学理论与应用Proof LetG1=G zv|z NG(v)u+zu|z NG(v)u,if xu xvG zu|z NG(u)v+zv|z NG(u)v,if xu(p)(G)

43、.In the following proofs,we will frequently use the following Lemma.Lemma 2.7Let G be a connected graph such that u1v1 E(G),u2v2 E(G),u1u2/E(G),v1v2/E(G),p 1.Let G=Gu1v1,u2v2+v1v2,u1u2.Let x be a positive eigenvectorof(p)(G)with xp=1.If xv1 xu2,xv2 xu1,then(p)(G)(p)(G).Moreover,if one of the two ine

44、qualities is strict,then(p)(G)(p)(G).Proof By(p)(G)=maxyp=1PG(y)PG(x),we have(p)(G)(p)(G)PG(x)PG(x)=2(xv1xv2+xu1xu2 xu1xv1 xu2xv2)=2(xv1 xu2)(xv2 xu1)0,i.e.,(p)(G)(p)(G).If(p)(G)=(p)(G),then x must be an eigenvector of(p)(G).From the eigenequations of(p)(G)in vertices v1and v2,we have(p)(G)xp1v1=uNG

45、(v1)xu=xu1+uNG(v1)v2,u1xu xv2+uNG(v1)v2,u1xu=uNG(v1)xu=(p)(G)xp1v1,and(p)(G)xp1v2=uNG(v2)xu=xu2+uNG(v2)v1,u2xu xv1+uNG(v2)v1,u2xu=uNG(v2)xu=(p)(G)xp1v2.Therefore,xv1=xu2,xv2=xu1.This completes the proof.给定片段数的树、单圈图和双圈图的极值 p谱半径69Lemma 2.8Let G be a graph among G(n,c,k)obtaining the maximum pspectral

46、radius,wherec 0,p 1.Let u and v be two vertices of G.Then we have(a)if dG(u)dG(v),then xu xv(b)if xu xv,then dG(u)dG(v)(c)if xu=xv,then dG(u)=dG(v).Proof(a)Suppose to the contrary that xu xv.Note that there exists a shortest path Puvbetweenu and v.Let dG(u)dG(v)=r.Notice that r 0.Then there must exi

47、st w1,wr NG(u)NG(v)and w1,wr/V(Puv).Let G1=G wiu|i=1,r+wiv|i=1,r.Clearly,G1 G(n,c,k).By Lemma 2.2,we have(p)(G1)(p)(G),which is a contradiction.Hence(a)holds.The statement of(c)is immediately from(a).Now,we prove(b).Otherwise,if dG(v)dG(u)=r 0,by the statement of(a),we have xv xu,which is a contradi

48、ction.Hence(b)holds.Definition 2.1Let G be a ccyclic graph with c 1 and u V(G).A closer vertex v of u is avertex adjacent to u satisfying d(v,G)=d(u,G)1.A further vertex w of u is a vertex adjacent to usatisfying d(w,G)=d(u,G)+1.Lemma 2.9Let G be a ccyclic graph among G(n,c,k)obtaining the maximum p

49、spectral radius,where c 1.Then dG(v)2 for any v V(G)V(G).Proof If the conclusion is not ture,then there is a vertex v V(G)V(G)such that dG(v)3.Let u be the closest vertex to v in V(G).Let Puvbe the shortest path connecting u and v.Clearly,V(Puv)V(G)=u.Note that dG(u)3.Let x be a positive eigenvector

50、 of(p)(G).LetG1=G vw|w NG(v)V(Puv)+uw|w NG(v)V(Puv),if xu xvG uw|w NG(u)V(Puv)+vw|w NG(u)V(Puv),if xv xu.Obviously,G1 G(n,c,k).By Lemma 2.2,(p)(G1)(p)(G),which is a contradiction.Lemma 2.10Let G be a ccyclic graph among G(n,c,k)obtaining the maximum pspectral radius,wherec 1.LetP=v0v1vqbeapendantpat

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服