ImageVerifierCode 换一换
格式:PDF , 页数:13 ,大小:200.15KB ,
资源ID:1459412      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1459412.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(青岛版初二上学期知识点总结.pdf)为本站上传会员【1587****927】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

青岛版初二上学期知识点总结.pdf

1、初二上学期知识点总结初二上学期知识点总结三角形几何 A 级概念:(要求深刻理解、熟练运用、主要用于几何证明)1三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图)ABCD几何表达式举例:(1)AD 平分BACBAD=CAD(2)BAD=CADAD 是角平分线2三角形的中线定义:在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)ABCD几何表达式举例:(1)AD 是三角形的中线 BD=CD(2)BD=CDAD 是三角形的中线3三角形的高线定义:从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角

2、形的高线.(如图)ABCD几何表达式举例:(1)AD 是 ABC 的高ADB=90(2)ADB=90AD 是 ABC 的高4三角形的三边关系定理:三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)ABC几何表达式举例:(1)AB+BCAC(2)AB-BCAC5等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.(如图)几何表达式举例:(1)ABC 是等腰三角形ABC AB=AC(2)AB=AC ABC 是等腰三角形6等边三角形的定义:有三条边相等的三角形叫做等边三角形.(如图)ABC几何表达式举例:(1)ABC 是等边三角形AB=BC=AC(2)AB=BC=ACABC 是等边三

3、角形7三角形的内角和定理及推论:(1)三角形的内角和 180;(如图)(2)直角三角形的两个锐角互余;(如图)(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)(4)三角形的一个外角大于任何一个和它不相邻的内角.(1)(2)(3)(4)几何表达式举例:(1)A+B+C=180(2)C=90A+B=90(3)ACD=A+B(4)ACD A8直角三角形的定义:有一个角是直角的三角形叫直角三角形.(如图)ABC几何表达式举例:(1)C=90ABC 是直角三角形(2)ABC 是直角三角形C=909等腰直角三角形的定义:两条直角边相等的直角三角形叫等腰直角三角形.(如图)几何表达式举例:(1)

4、C=90 CA=CBABC 是等腰直角三角形(2)ABC 是等腰直角三DABCABCABCABC角形C=90 CA=CB10全等三角形的性质:(1)全等三角形的对应边相等;(如图)(2)全等三角形的对应角相等.(如图)几何表达式举例:(1)ABCEFG AB=EF (2)ABCEFGA=E 11全等三角形的判定:“SAS”“ASA”“AAS”“SSS”“HL”.(如图)(1)(2)(3)几何表达式举例:(1)AB=EF B=F又 BC=FGABCEFG(2)(3)在 RtABC 和 RtEFG中 AB=EF又 AC=EGRtABCRtEFG12角平分线的性质定理及逆定理:(1)在角平分线上的点

5、到角的两边距离相等;(如图)(2)到角的两边距离相等的点在角平分线上.(如图)AOBCDE几何表达式举例:(1)OC 平分AOB又CDOA CEOB CD=CE(2)CDOA CEOB又CD=CEABCGEFABCGEFABCEFGOC 是角平分线13线段垂直平分线的定义:垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)ABEFO几何表达式举例:(1)EF 垂直平分 ABEFAB OA=OB(2)EFAB OA=OBEF 是 AB 的垂直平分线14线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)(2)和一条线段的两个端点

6、的距离相等的点,在这条线段的垂直平分线上.(如图)ABCMNP几何表达式举例:(1)MN 是线段 AB 的垂直平分线 PA=PB (2)PA=PB点 P 在线段 AB 的垂直平分线上15等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3)等边三角形的各角都相等,并且都是 60.(如图)ABC(1)ABCD(2)几何表达式举例:(1)AB=ACB=C(2)AB=AC又BAD=CADBD=CDADBC(3)ABC 是等边三角形 A=B=C=60ABC(3)16等腰三角形的判定定理及推论:(

7、1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2)三个角都相等的三角形是等边三角形;(如图)(3)有一个角等于 60的等腰三角形是等边三角形;(如图)(4)在直角三角形中,如果有一个角等于 30,那么它所对的直角边是斜边的一半.(如图)ABC(1)ABC(2)(3)ABC(4)几何表达式举例:(1)B=C AB=AC(2)A=B=CABC 是等边三角形(3)A=60又AB=ACABC 是等边三角形(4)C=90B=30 AC=AB2117关于轴对称的定理(1)关于某条直线对称的两个图形是全等形;(如图)(2)如果两个图形关于某条直线对称,那么对称轴是对应

8、点连线的垂直平分线.(如图)几何表达式举例:(1)ABC、EGF 关于 MN 轴对称ABCEGF(2)ABC、EGF 关于 MN 轴对称OA=OE MNAE18勾股定理及逆定理:(1)直角三角形的两直角边a、b 的平方和等于斜边 c 的平方,即 a2+b2=c2;(如图)(2)如果三角形的三边长有下面关系:a2+b2=c2,那么这个三ABC几何表达式举例:(1)ABC 是直角三角形a2+b2=c2(2)a2+b2=c2ABC 是直角三角形EFMOABCNG角形是直角三角形.(如图)19Rt 斜边中线定理及逆定理:(1)直角三角形中,斜边上的中线是斜边的一半;(如图)(2)如果三角形一边上的中线

9、是这边的一半,那么这个三角形是直角三角形.(如图)DABC几何表达式举例:ABC 是直角三角形D 是 AB 的中点CD=AB21(2)CD=AD=BDABC 是直角三角形几何 B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二 常识:1三角形中,第三边长的判断:另两边之差第三边另两边之和.2三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在

10、三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3如图,三角形中,有一个重要的面积等式,即:若 CDAB,BECA,则CDAB=BECA.4三角形能否成立的条件是:最长边另两边之和.5直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.6分别含 30、45、60的直角三角形是特殊的直角三角形.7如图,双垂图形中,有两个重要的性质,即:(1)ACCB=CDAB;(2)1=B,2=A.8三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角ABCEDABCD12所对的边

11、是对应边.10等边三角形是特殊的等腰三角形.11几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.12符合“AAA”“SSA”条件的三角形不能判定全等.13几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16作图题在分析

12、过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.18几何重要图形和辅助线:(1)选取和作辅助线的原则:构造特殊图形,使可用的定理增加;一举多得;聚合题目中的分散条件,转移线段,转移角;作辅助线必须符合几何基本作图.(2)已知角平分线.(若 BD 是角平分线)在 BA 上截取 BE=BC 构造全等,转移线段和角;过 D 点作 DEBC 交 AB 于 E,构造等腰三角形.BCDAEBCDAE(3)已知三角形中线(若 AD 是 BC 的中线)过 D 点作 DEAC 交 AB于 E,构造

13、中位线;延长 AD 到 E,使DE=AD 连结 CE 构造全等,转移线段和角;AD 是中线 SABD=SADC(等底等高的三角形等面积)(4)已知等腰三角形 ABC 中,AB=AC 作等腰三角形 ABC 底边的中线AD(顶角的平分线或底边的高)构造全等三角形;作等腰三角形 ABC 一边的平行线 DE,构造新的等腰三角形.(5)其它作等边三角形 ABC一边 的平行线 DE,构造新的等边三角形;作 CEAB,转移角;延长 BD 与 AC 交于E,不规则图形转化为规则图形;ADECBADECBADCBADCBEADCBEADCBDACBECBADECEBDA 多边形转化为三角形;延长 BC 到 D,

14、使CD=BC,连结 AD,直角三角形转化为等腰三角形;若 ab,AC,BC 是角平分线,则C=90.分式分式 1.分式的定义:分式的定义:如果 A、B 表示两个整式,并且 B 中含有字母,那么式子叫BA做分式。2.分式有意义、无意义的条件分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于 0;分式无意义的条件:分式的分母等于 0。3.3.分式值为零的条件:分式值为零的条件:当分式的分子等于 0 且分母不等于 0 时,分式的值为 0。(分式的值是在分式有意义的前提下才可以考虑的,所以使分式 为 0 的AB条件是 A0,且 B0.)(分式的值为 0 的条件是:分子等于 0,分母不等于 0

15、,二者缺一不可。首先求出使分子为 0 的字母的值,再检验这个字母的值是否使分母的值为 0.当分母的值不为 0 时,就是所要求的字母的值。)4.分式的基本性质:分式的基本性质:分式的分子与分母同乘(或除以)一个不等于 0 的整式,分式的值不变。用式子表示为 (),其中 A、B、C0C是整式 注意:(1)“C 是一个不等于 0 的整式”是分式基本性质的一个制约条件;(2)应用分式的基本性质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误;(3)若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除以同一 整式 C;ADOBCEBCDABACabCBCABA

16、CBCABA (4)分式的基本性质是分式进行约分、通分和符号变化的依据。5.5.分式的通分:分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。通分的关键是确定几个式子的最简公分母。几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项

17、式,一般应先分解因式。6.6.分式的约分:分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫 做分式的约分。约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。约分的关键是找出分式中分子和分母的公因式。(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母 分解因式,然后再约分;(2)找公因式的方法:当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;当分子、分母都是多项式时,先把多项式因式分解。易错点:(1)当分子或分母是一个式子时

18、,要看做一个整体,易出现漏乘(或漏除以);(2)在式子变形中要注意分子与分母的符号变化,一般情况下要把分子或分母前的“”放在分数线前;(3)确定几个分式的最简公分母时,要防止遗漏只在一个分母中出现的字母;7.7.分式的运算:分式的运算:分式乘法法则:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。分式除法法则:分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。用式子表示是:提示:(1)分式与分式相乘,若分子、分母是单项式,可先将分子、分母bcadcdbadcbabdacdcba;分别相乘,然后约去公因式,化为最简分式;若分子、分母是多项式,先把分子

19、、分母分解公因式,看能否约分,然后再相乘;(2)当分式与整式相乘时,要把整式与分式的分子相乘作为积的分子,分母不变 (3)分式的除法可以转化为分式的乘法运算;(4)分式的乘除混合运算统一为乘法运算。分式的乘除法混合运算顺序与分数的乘除混合运算相同,即按照从左到右的顺序,有括号先算括号 里面的;分式的乘除混合运算要注意各分式中分子、分母符号的处理,可先确定积的符号;分式的乘除混合运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式。分式乘方法则:分式乘方法则:分式乘方要把分子、分母各自乘方。用式子表示是:(其中 n 是正整数)注意:(1)乘方时,一定要把分式加上括号;(2)分

20、式乘方时确定乘方结果的符号与有理数乘方相同,即正分式的任何次幂都为正;负分式的偶次幂为正,奇次幂为负;(3)分式乘方时,应把分子、分母分别看做一个整体;(4)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分。分式的加减法则:分式的加减法则:法则:同分母的分式相加减,分母不变,把分子相加减。用式子表示为:abcba cb法则:异分母的分式相加减,先通分,转化为同分母分式,然后再加减。用式子表示为:abcdadbdbcbdad bcbd注意:(1)“把分子相加减”是把各个分子的整体相加减,即各个分子应先加上括号后再加减,分子是单项式时括号可以省略;

21、(2)异分母分式相加减,“先通分”是关键,最简公分母确定后再通分,计算时要注意分式中符号的处理,特别是分子相减,要注意分子的整体性;(3)运算时顺序合理、步骤清晰;(4)运算结果必须化成最简分式或整式。nnnbaba)(分式的混合运算分式的混合运算:分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,计算结果要化为整式或最简分式。8 8、分式方程:分式方程:含分式,并且分母中含未知数的方程叫做分式方程。分式方程的解法:(1)解分式方程的基本思想方法是:分式方程 整式方程.(2)解分式方程的一般方法和步骤:去分母

22、:即在方程的两边都同时乘以最简公分母,把分式方程化为整式方程,依据是等式的基本性质;解这个整式方程;检验:把整式方程的解代入最简公分母,使最简公分母不等于 0 的解是原方程的解,使最简公分母等于 0的解不是原方程的解,即说明原分式方程无解。注意:去分母时,方程两边的每一项都乘以最简公分母,不要漏乘不含分母的项;解分式方程必须要验根,千万不要忘了!9 9、解分式方程的步骤、解分式方程的步骤 :(1)能化简的先化简;(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根分式方程检验方法:分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原

23、分式方程的解;否则,这个解不是原分式方程的解。1010、.含有字母的分式方程的解法:含有字母的分式方程的解法:在数学式子的字母不仅可以表示未知数,也可以表示已知数,含有字母已知数的分式方程的解法,也是去分母,解整式方程,检验这三个步骤,需要注意的是要找准哪个字母表示未知数,哪个字母表示未知数,还要注意题目的 限制条件。计算结果是用已知数表示未知数,不要混淆。1111、.列分式方程解应用题的步骤是:列分式方程解应用题的步骤是:(1)(1)审:审:审清题意;(2)(2)找找:找出相等关系;(3)(3)设:设:设未知数;(4)(4)列:列:列出分式方程;(5)(5)解:解:解这个分式方程;(6)(6

24、)验:验:既要检验根是否是所列分式方程的解,又要检验根是否符合题意;(7)(7)答答:写出答案。应用题有几种类型;基本公式是什么?应用题有几种类型;基本公式是什么?基本上有五种:(1)行程问题 基本公式:路程=速度时间 而行程问题中又分相遇问题、追及问题(2)数字问题:在数字问题中要掌握十进制数的表示法去分母转化(3)工程问题 基本公式:工作量=工时工效(4)顺水逆水问题 v顺水=v静水+v水 v逆水=v静水-v水 数据的分析数据的分析 1.加权平均数:加权平均数的计算公式。权的理解:反映了某个数据在整个数据中的重要程度。学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。4.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。5.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。6.平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服