ImageVerifierCode 换一换
格式:PPT , 页数:18 ,大小:1.41MB ,
资源ID:1456660      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1456660.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(函数的最大(最小)值公开课.ppt)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

函数的最大(最小)值公开课.ppt

1、主讲:王立玮喷泉喷出的抛物线型水柱到达“最高点”后便下落,经历了先“增”后“减”的过程,从中我们发现单调性与函数的最值之间似乎有着某种“联系”,让我们来研究函数的最大值与最小值.前面我们学习了函数的单调性,知道了在函数定义域的某个区间上函数值的变化与自变量增大之间的关系,请大家看某市一天24小时内的气温变化图.(1)说出气温随时间变化的特点.从图象上看出0时4时之间气温下降,4时14时之间气温逐步上升,14时24时气温逐渐下降.(2)某市这一天何时的气温最高和何时的气温最低?14时气温达到最高,4时气温达到最低.(3)从图象上看出14时的气温为全天的最高气温,它表示在024时之间,气温于14时

2、达到最大值,从图象上看出,图象在这一点的位置最高.这就是本节课我们要研究函数最大、最小值问题.观察下列两个函数的图象:yxox0图2MB探究点1函数的最大值【解答】第一个函数图象有最高点A,第二个函数图象有最高点B,也就是说,这两个函数的图象都有最高点.思考2设函数y=f(x)图象上最高点的纵坐标为M,则对函数定义域内任意自变量x,f(x)与M的大小关系如何?【解答】f(x)M思考1这两个函数图象有何共同特征?最高点的纵坐标即是函数的最大值!函数最大值定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有_;(2)存在x0I,使得_。那么,我们称M是函数y

3、f(x)的最大值.f(x)Mf(x0)=M函数图象在最高点处的函数值是函数在整个定义域上最大的值.对于函数f(x)=-x2而言,即对于函数定义域中任意的xR,都有f(x)f(0)当一个函数的图象有最高点时,我们就说这个函数有最大值.当一个函数的图象无最高点时,我们就说这个函数没有最大值.函数图象最高点处的函数值的刻画:函数最大值的“形”的定义:而只有(2)没有(1),M不一定是函数y=f(x)的最大值.注意啦!定义中的两个条件缺一不可,只有(1)没有(2)不存在最大值点,图1yox0 xmxyox0图2m观察下列两个函数的图象:探究点2函数的最小值思考1:这两个函数图象各有一个最低点,函数图

4、象上最低点的纵坐标叫什么名称?提示:函数图象上最低点的纵坐标是所有函数值中的最小值,即函数的最小值.函数最小值的定义:一般地,设函数y=f(x)的定义域为I,如果存在实数N满足:(1)对任意的,都有_;(2)存在,使得_.那么,我们就称N是函数y=f(x)的最小值.f(x)Nf(x0)=N函数图象在最低点处的函数值是函数在整个定义域上最小的值.对于函数f(x)=x2而言,即对于函数定义域中任意的xR,都有f(x)f(0).函数图象最低点处的函数值的刻画:最小值的“形”的定义:当一个函数的图象有最低点时,我们就说这个函数有最小值.当一个函数的图象没有最低点时,我们就说这个函数没有最小值.请大家思

5、考,是否每个函数都有最大值,最小值?举例说明.一个 函数不一定有最值.有的函数可能只有一个最大(或小)值.如果一个函数存在最值,那么函数的最值都是唯一的,但取最值时的自变量可以有多个.【1】求函数y=x2-2x-1的值域和最值.(1)x0,3 (2)x(2,4 (3)x-2,-1ymin=f(1)=-2,ymax=f(3)=2.值域-2,2ymax=f(4)=7.值域(-1,7ymax=f(-2)=7.值域2,7ymin=f(-1)=2,例2.求函数在区间2,6上的最大值和最小值 解:设x1,x2是区间2,6上的任意两个实数,且x1x2,则由2x1x20,(x1-1)(x2-1)0,于是 因此,函数 在区间2,6上的两个端点上分别取得最大值和最小值.所以,函数 是区间2,6上的减函数.当x=2时取最大值当x=6时取最小值即xyo1 23 4561321.函数的最大(小)值的定义及几何意义 2.三类函数的最值的求法 利用二次函数的性质(配方法)求函数的最大(小)值.利用图象求函数的最大(小)值.利用函数单调性求函数的最大(小)值 如果函数y=f(x)在区间a,b上单调递增,则函数y=f(x)在x=a处有最小值f(a),在x=b处有最大值f(b).函数在其定义域上的最大值,其几何意义是图象上最高点的纵坐标;最小值为图象上最低点的纵坐标.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服