1、第六节 空间向量 知识提要 1. 空间向量的概念:在空间,我们把具有 和 的量叫做向量。2. 空间向量的运算。定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 ;运算律:加法交换律:加法结合律:数乘分配律:3. 共线向量。(1)如果表示空间向量的有向线段所在的直线 或 ,那么这些向量也叫做共线向量或平行向量,平行于,记作。(2)共线向量定理:空间任意两个向量、(),/存在实数,使 。4. 共面向量 (1)定义:一般地,能平移到同一 内的向量叫做共面向量。说明:空间任意的两向量都是 的。(2)共面向量定理:如果两个向量不共线,与向量共面的条件是存在实数,使 。5. 空间向量
2、基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使 。若三向量不共面,我们把叫做空间的一个基底,叫做基向量,空间任意三个 的向量都可以构成空间的一个基底。推论:设是不共面的四点,则对空间任一点,都存在唯一的三个有序实数,使。6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标:在空间直角坐标系中,对空间任一点,存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作,叫横坐标,叫纵坐标,叫竖坐标。(2)若空间的一个基底的三个基向量互相垂直,且长为,这个基底叫单位正交基底,用表示。(3)空间向量的直角坐标运算律:若,则, , 。若,则。一个向量
3、在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。(4)模长公式:若,则,(5)夹角公式:。(6)两点间的距离公式:若,则,或 7. 空间向量的数量积。(1)空间向量的夹角及其表示:已知两非零向量,在空间任取一点,作,则叫做向量与的夹角,记作;且规定,显然有;若,则称与互相垂直,记作:。(2)向量的模:设,则有向线段的长度叫做向量的长度或模,记作:。(3)向量的数量积:已知向量,则叫做的数量积,记作,即。(4)空间向量数量积的性质:。(5)空间向量数量积运算律:。(交换律)。(分配律)。 典例精析 例1. 已知平行六面体ABCD,化简下列向量表达式,标出化简结果的向量。
4、; ; ; 。例2. 已知空间四边形,其对角线,分别是对边的中点,点在线段上,且,用基底向量表示向量。例3. 如图,在空间四边形中,求与的夹角的余弦值。说明:由图形知向量的夹角易出错,如易错写成,切记!例4. 长方体中,为与的交点,为与的交点,又,求长方体的高。ABCDEFNM例5如图,已知矩形ABCD和矩形ADEF所在平面互相垂直,点M,N分别在对角线BD,AE上,且. 求证:MN/平面CDE分析:要证明线面平行,只需证明与共面。 巩固提高 1. 已知A(0,2,3),B(-2,1,6),C(1,-1,5),若的坐标为 .2、已知空间四边形,连结,设分别是的中点,化简下列各表达式,并标出化简结果向量:(1); (2); (3)。OA/CMED/B/ADB3. 如图,在正方体中,点E是AB与OD的交点,M是OD/与CE的交点,试分别用向量表示和4、已知空间三点A(0,2,3),B(2,1,6),C(1,1,5)。求以向量为一组邻边的平行四边形的面积S;若向量分别与向量垂直,且|,求向量的坐标。5. 一条线段夹在一个直二面角的两个面内,它和两个面所成的角都是300,求这条线段与这个二面角的棱所成的角的大小.