ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:830.01KB ,
资源ID:1446560      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1446560.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(常微分方程试题库..doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

常微分方程试题库..doc

1、常微分方程一、填空题1微分方程的阶数是_ 答:12若和在矩形区域内是的连续函数,且有连续的一阶偏导数,则方程有只与有关的积分因子的充要条件是 _ 答:3_ 称为齐次方程. 答:形如的方程4如果 _ ,则存在唯一的解,定义于区间 上,连续且满足初始条件 ,其中 _ . 答:在上连续且关于满足利普希兹条件 5对于任意的 , (为某一矩形区域),若存在常数使 _ ,则称在上关于满足利普希兹条件. 答: 6方程定义在矩形区域:上 ,则经过点 的解的存在区间是 _ 答:7若是齐次线性方程的个解,为其伏朗斯基行列式,则满足一阶线性方程 _ 答:8若为齐次线性方程的一个基本解组,为非齐次线性方程的一个特解,

2、则非齐次线性方程的所有解可表为_ 答:9若为毕卡逼近序列的极限,则有_答:10_称为黎卡提方程,若它有一个特解,则经过变换_,可化为伯努利方程答:形如的方程 11一个不可延展解的存在区间一定是 区间答:开12方程满足解的存在唯一性定理条件的区域是 答:,(或不含x 轴的上半平面)13方程的所有常数解是 答:14函数组在区间I上线性无关的 条件是它们的朗斯基行列式在区间I上不恒等于零答:充分15二阶线性齐次微分方程的两个解为方程的基本解组充分必要条件是 答:线性无关(或:它们的朗斯基行列式不等于零)16方程的基本解组是 答:17若在上连续,则方程的任一非零解 与轴相交 答:不能18在方程中,如果

3、,在上连续,那么它的任一非零解在平面上 与轴相切答:不能19若是二阶线性齐次微分方程的基本解组,则它们 共同零点答:没有20方程的常数解是 答:21向量函数组在其定义区间上线性相关的 条件是它们的朗斯基行列式,答:必要22方程满足解的存在唯一性定理条件的区域是 答: 平面23方程所有常数解是 答:24方程的基本解组是 答:25一阶微分方程的通解的图像是 维空间上的一族曲线 答:2二、单项选择题1阶线性齐次微分方程基本解组中解的个数恰好是( A )个 (A) (B)-1 (C)+1 (D)+22如果,都在平面上连续,那么方程的任一解的存在区间( D ) (A)必为 (B)必为 (C)必为 (D)

4、将因解而定3方程满足初值问题解存在且唯一定理条件的区域是( D )(A)上半平面 (B)xoy平面 (C)下半平面 (D)除y轴外的全平面4一阶线性非齐次微分方程组的任两个非零解之差( C ) (A)不是其对应齐次微分方程组的解 (B)是非齐次微分方程组的解 (C)是其对应齐次微分方程组的解 (D)是非齐次微分方程组的通解5. 方程过点共有( B )个解(A)一 (B)无数 (C)两 (D)三6. 方程( B )奇解(A)有三个 (B)无 (C)有一个 (D) 有两个7阶线性齐次方程的所有解构成一个( A )线性空间(A)维 (B)维 (C)维 (D)维8方程过点( A ) (A)有无数个解

5、(B)只有三个解 (C)只有解 (D)只有两个解9. 连续是保证对满足李普希兹条件的( B )条件(A)充分 (B)充分必要 (C)必要 (D)必要非充分10二阶线性非齐次微分方程的所有解( C ) (A)构成一个2维线性空间 (B)构成一个3维线性空间(C)不能构成一个线性空间 (D)构成一个无限维线性空间11方程的奇解是( D )(A) (B) (C) (D)12若,是一阶线性非齐次微分方程的两个不同特解,则该方程的通解可用这两个解表示为( C ) (A) (B)(C) (D)13连续是方程初值解唯一的( D )条件(A)必要 (B)必要非充分 (C)充分必要 (D)充分14. 方程( C

6、 )奇解(A)有一个 (B)有两个 (C)无 (D)有无数个 15方程过点(0, 0)有( A )(A) 无数个解(B) 只有一个解 (C) 只有两个解(D) 只有三个解三、求下列方程的通解或通积分1解:,则所以另外也是方程的解2求方程经过的第三次近似解解:3讨论方程,的解的存在区间解:两边积分所以方程的通解为故过的解为通过点的解向左可以延拓到,但向右只能延拓到,所以解的存在区间为4 求方程的奇解解: 利用判别曲线得 消去得 即 所以方程的通解为 , 所以 是方程的奇解5解: =, = , = , 所以方程是恰当方程. 得 所以故原方程的解为 6 解: 故方程为黎卡提方程.它的一个特解为 ,令

7、 , 则方程可化为 , 即 , 故 7解: 两边同除以得所以 , 另外 也是方程的解8解 当时,分离变量得 等式两端积分得 即通解为 9. 解 齐次方程的通解为 令非齐次方程的特解为 代入原方程,确定出 原方程的通解为 + 10. 解 方程两端同乘以,得 令 ,则,代入上式,得 通解为 原方程通解为 11 解 因为,所以原方程是全微分方程 取,原方程的通积分为 即 12 解:当,时,分离变量取不定积分,得 通积分为 13解 原方程可化为 于是 积分得通积分为 14解:令,则,代入原方程,得 分离变量,取不定积分,得 () 通积分为: 15 解 令,则,代入原方程,得 , 当时,分离变量,再积分

8、,得 即通积分为: 16 解:齐次方程的通解为 令非齐次方程的特解为 代入原方程,确定出 原方程的通解为 + 17. 解 积分因子为 原方程的通积分为 即 18解:原方程为恰当导数方程,可改写为 即 分离变量得 积分得通积分 19 解 令,则原方程的参数形式为 由基本关系式 ,有 积分得 得原方程参数形式通解为 20解 原方程可化为 于是 积分得通积分为 21 解:由于,所以原方程是全微分方程 取,原方程的通积分为 即 四、计算题1求方程的通解解 对应的齐次方程的特征方程为: 特征根为: 故齐次方程的通解为: 因为是单特征根所以,设非齐次方程的特解为 代入原方程,有 , 可解出 故原方程的通解

9、为 2求下列方程组的通解 解 方程组的特征方程为 即 特征根为 , 对应的解为 其中是对应的特征向量的分量,满足 可解得 同样可算出对应的特征向量分量为 所以,原方程组的通解为 3求方程的通解解:方程的特征根为, 齐次方程的通解为 因为不是特征根。所以,设非齐次方程的特解为 代入原方程,比较系数得 确定出 , 原方程的通解为 4求方程的通解解 对应齐次方程的特征方程为,特征根为, 齐次方程的通解为 因为是特征根。所以,设非齐次方程的特解为 代入原方程,比较系数确定出 , 原方程的通解为 五、证明题1在方程中,已知,在上连续,且求证:对任意和,满足初值条件的解的存在区间必为 证明:由已知条件,该

10、方程在整个 平面上满足解的存在唯一及解的延展定理条件 显然 是方程的两个常数解 任取初值,其中,记过该点的解为,由上面分析可知,一方面可以向平面无穷远处无限延展;另一方面又上方不能穿过,下方不能穿过,否则与惟一性矛盾故该解的存在区间必为2设和是方程的任意两个解,求证:它们的朗斯基行列式,其中为常数证明:如果和是二阶线性齐次方程 的解,那么由刘维尔公式有 现在,故有 3在方程中,已知,在上连续求证:该方程的任一非零解在平面上不能与x轴相切证明:由已知条件可知,该方程满足解的存在惟一及解的延展定理条件,且任一解的存在区间都是 显然,该方程有零解 假设该方程的任一非零解在x轴上某点处与x轴相切,即有

11、= 0,那么由解的惟一性及该方程有零解可知,这是因为零解也满足初值条件= 0,于是由解的惟一性,有 这与是非零解矛盾 4在方程中,在上连续,求证:若恒不为零,则该方程的任一基本解组的朗斯基行列式是上的严格单调函数证明: 设,是方程的基本解组,则对任意,它们朗斯基行列式在上有定义,且又由刘维尔公式 , 由于,于是对一切,有 或 故 是上的严格单调函数 5试证:若已知黎卡提方程的一个特解,则可用初等积分法求它的通解 证明: 设黎卡提方程的一个特解为 令 , 又 由假设 得 此方程是一个的伯努利方程,可用初等积分法求解6试用一阶微分方程解的存在唯一性定理证明:一阶线性方程 , 当 , 在上连续时,其解存在唯一证明: 令 : , , 在上连续, 则 显然在上连续 ,因为 为上的连续函数 ,故在上也连续且存在最大植 , 记为 即 , , =因此 一阶线性方程当 , 在上连续时,其解存在唯一16

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服