1、河北省青龙满族自治县逸夫中学高中数学必修1第1章 集合与函数概念-2.示范教案(1.2集合间的基本关系)教学分析课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如与的区别.三维目标1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利
2、用类比发现新结论的能力.2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.重点难点教学重点:理解集合间包含与相等的含义.教学难点:理解空集的含义.课时安排1课时教学过程导入新课思路1.实数有相等、大小关系,如5=5,53等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)欲知谁正确,让我们一起来观察、研探.思路2.复习元素与集合的关系属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R.类比实数的大小关系,如57,22,试想集合间是否有类似的“大
3、小”关系呢?(答案:(1);(2);(3)推进新课新知探究提出问题(1)观察下面几个例子:A=1,2,3,B=1,2,3,4,5;设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;设C=x|x是两条边相等的三角形,D=x|x是等腰三角形;E=2,4,6,F=6,4,2.你能发现两个集合间有什么关系吗?(2)例子中集合A是集合B的子集,例子中集合E是集合F的子集,同样是子集,有什么区别?(3)结合例子,类比实数中的结论:“若ab,且ba,则a=b”,在集合中,你发现了什么结论?(4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学
4、是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?(5)试用Venn图表示例子中集合A和集合B.(6)已知AB,试用Venn图表示集合A和B的关系.(7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?(9)与实数中的结论“若ab,且bc,则ac”相类比,在集合中,你能得出什么结论?活动:教师从以下方面引导学生:(1)观察两个集合间元素的特点.(2)从它们含有的元素间的关系来考虑.规定:如果AB,但存在xB
5、,且xA,我们称集合A是集合B的真子集,记作AB(或BA).(3)实数中的“”类比集合中的.(4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.(5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.(6)分类讨论:当AB时,AB或A=B.(7)方程x2+1=0没有实数解.(8)空集记为,并规定:空集是任何集合的子集,即A;空集是任何非空集合的真子集,即A(A).(9)类比子集.讨论结果:(1)集合A中的元素都在集合B中;集合A中的元素都在集合B
6、中;集合C中的元素都在集合D中;集合E中的元素都在集合F中.可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.(2)例子中AB,但有一个元素4B,且4A;而例子中集合E和集合F中的元素完全相同.(3)若AB,且BA,则A=B.(4)可以把集合中元素写在一个封闭曲线的内部来表示集合.(5)如图1121所示表示集合A,如图1122所示表示集合B.图1-1-2-1图1-1-2-2(6)如图1-1-2-3和图1-1-2-4所示.图1-1-2-3图1-1-2-4(7)不能.因为方程x2+1=0没有实数解.(8)空集.(9)若AB,BC,则AC;若AB,
7、BC,则AC.应用示例思路11.某工厂生产的产品在重量和长度上都合格时,该产品才合格.若用A表示合格产品的集合,B表示重量合格的产品的集合,C表示长度合格的产品的集合.已知集合A、B、C均不是空集.(1)则下列包含关系哪些成立?AB,BA,AC,CA.(2)试用Venn图表示集合A、B、C间的关系.活动:学生思考集合间的关系以及Venn图的表示形式.当集合A中的元素都属于集合B时,则AB成立,否则AB不成立.用相同的方法判断其他包含关系是否成立.教师提示学生以下两点:(1)重量合格的产品不一定是合格产品,但合格的产品一定重量合格;长度合格的产品不一定是合格产品,但合格的产品一定长度合格.(2)
8、根据集合A、B、C间的关系来画出Venn图.解:(1)包含关系成立的有:BA,CA.(2)集合A、B、C间的关系用Venn图表示,如图1-1-2-5所示.图1-1-2-5变式训练课本P7练习3.点评:本题主要考查集合间的包含关系.其关键是首先明确两集合中的元素具体是什么.判断两个集合A、B之间是否有包含关系的步骤是:先明确集合A、B中的元素,再分析集合A、B中的元素之间的关系,得:当集合A中的元素都属于集合B时,有AB;当集合A中的元素都属于集合B,当集合B中至少有一个元素不属于集合A时,有AB;当集合A中的元素都属于集合B,并且集合B中的元素也都属于集合A时,有A=B;当集合A中至少有一个元
9、素不属于集合B,并且集合B中至少有一个元素也不属于集合A时,有AB,且BA,即集合A、B互不包含.2.写出集合a,b的所有子集,并指出哪些是它的真子集.活动:学生思考子集和真子集的定义,教师提示学生空集是任何集合的子集,一个集合不是其本身的真子集.按集合a,b的子集所含元素的个数分类讨论.解:集合a,b的所有子集为,a,b,a,b.真子集为,a,b.变式训练2007山东济宁一模,1 已知集合P=1,2,那么满足QP的集合Q的个数是( )A.4 B.3 C.2 D.1分析:集合P=1,2含有2个元素,其子集有22=4个,又集合QP,所以集合Q有4个.答案:A点评:本题主要考查子集和真子集的概念,
10、以及分类讨论的思想.通常按子集中所含元素的个数来写出一个集合的所有子集,这样可以避免重复和遗漏.思考:集合A中含有n个元素,那么集合A有多少个子集?多少个真子集?解:当n=0时,即空集的子集为,即子集的个数是1=20;当n=1时,即含有一个元素的集合如a的子集为,a,即子集的个数是2=21;当n=2时,即含有一个元素的集合如a,b的子集为,a,b,a,b,即子集的个数是4=22.集合A中含有n个元素,那么集合A有2n个子集,由于一个集合不是其本身的真子集,所以集合A有(2n-1)个真子集.思路21.2006上海高考,理1已知集合A=-1,3,2m-1,集合B=3,m2.若BA,则实数m=_.活
11、动:先让学生思考BA的含义,根据BA,知集合B中的元素都属于集合A,集合元素的互异性,列出方程求实数m的值.因为BA,所以3A,m2A.对m2的值分类讨论.解:BA,3A,m2A.m2=-1(舍去)或m2=2m-1.解得m=1.m=1.答案:1点评:本题主要考查集合和子集的概念,以及集合元素的互异性.本题容易出现m2=3,其原因是忽视了集合元素的互异性.避免此类错误的方法是解得m的值后,再代入验证.讨论两集合之间关系时,通常依据相关的定义,观察这两个集合元素的关系,转化为解方程或解不等式.变式训练已知集合M=x|2-x2,由于NM,则N=或N,要对集合N是否为空集分类讨论.解:由题意得M=x|
12、x2,则N=或N.当N=时,关于x的方程ax=1中无解,则有a=0;当N时,关于x的方程ax=1中有解,则a0,此时x=,又NM,M.2.0a.综上所得,实数a的取值范围是a=0或0a,即实数a的取值范围是a|0a2.(1)分别写出下列集合的子集及其个数:,a,a,b,a,b,c.(2)由(1)你发现集合M中含有n个元素,则集合M有多少个子集?活动:学生思考子集的含义,并试着写出子集.(1)按子集中所含元素的个数分类写出子集;(2)由(1)总结当n=0,n=1,n=2,n=3时子集的个数规律,归纳猜想出结论.答案:(1)的子集有:,即有1个子集;a的子集有:、a,即a有2个子集;a,b的子集有
13、:、a、b、a,b,即a,b有4个子集;a,b,c的子集有:、a、b、c、a,b、a,c、b,c、a,b,c,即a,b,c有8个子集.(2)由(1)可得:当n=0时,有1=20个子集;当n=1时,集合M有2=21个子集;当n=2时,集合M有4=22个子集;当n=3时,集合M有8=23个子集;因此含有n个元素的集合M有2n个子集.变式训练已知集合A2,3,7,且A中至多有一个奇数,则这样的集合A有( )A.3个 B.4个 C.5个 D.6个分析:对集合A所含元素的个数分类讨论.A=或2或3或7或2,3或2,7共有6个.答案:D点评:本题主要考查子集的概念以及分类讨论和归纳推理的能力.集合M中含有
14、n个元素,则集合M有2n个子集,有2n-1个真子集,记住这个结论,可以提高解题速度.写一个集合的子集时,按子集中元素的个数来写不易发生重复和遗漏现象.知能训练课本P7练习1、2.【补充练习】1.判断正误:(1)空集没有子集. ( )(2)空集是任何一个集合的真子集. ( )(3)任一集合必有两个或两个以上子集. ( )(4)若BA,那么凡不属于集合A的元素,则必不属于B. ( )分析:关于判断题应确实把握好概念的实质.解:该题的5个命题,只有(4)是正确的,其余全错.对于(1)、(2)来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集.对于(3)来讲,可举反例,空集这一个集合就只
15、有自身一个子集.对于(4)来讲,当xB时必有xA,则xA时也必有xB.2.集合A=x|-1x3,xZ,写出A的真子集.分析:区分子集与真子集的概念,空集是任一非空集合的真子集,一个含有n个元素的子集有2n个,真子集有2n-1个,则该题先找该集合元素,后找真子集.解:因-1x3,xZ,故x=0,1,2,即a=x|-1x3,xZ=0,1,2.真子集:、1、2、0、0,1、0,2、1,2,共7个.3.(1)下列命题正确的是 ( )A.无限集的真子集是有限集B.任何一个集合必定有两个子集C.自然数集是整数集的真子集D.1是质数集的真子集(2)以下五个式子中,错误的个数为 ( )10,1,2 1,-3=
16、-3,1 0,1,21,0,2 0,1,2 0A.5 B.2 C.3 D.4(3)M=x|3x4,a=,则下列关系正确的是 ( )A.aM B.aM C.aM D.aM分析:(1)该题要在四个选择肢中找到符合条件的选择肢,必须对概念把握准确,无限集的真子集有可能是无限集,如N是R的真子集,排除A;由于只有一个子集,即它本身,排除B;由于1不是质数,排除D.(2)该题涉及到的是元素与集合,集合与集合的关系.应是10,1,2,应是0,1,2,应是0.故错误的有.(3)M=x|3x4,a=.因3a4,故a是M的一个元素.a是x|3x2m-1即m2m-1,得m4.综上有m4.点评:此问题解决要注意:不
17、应忽略;找A中的元素;分类讨论思想的运用.拓展提升问题:已知AB,且AC,B=0,1,2,3,4,C=0,2,4,8,则满足上述条件的集合A共有多少个?活动:学生思考AB,且AC所表达的含义.AB说明集合A是集合B的子集,即集合A中元素属于集合B,同理有集合A中元素属于集合C.因此集合A中的元素是集合B和集合C的公共元素.思路1:写出由集合B和集合C的公共元素所组成的集合,得满足条件的集合A;思路2:分析题意,仅求满足条件的集合A的个数,转化为求集合B和集合C的公共元素所组成的集合的子集个数.解法一:因AB,AC,B=0,1,2,3,4,C=0,2,4,8,由此,满足AB,有:,0,1,2,3
18、,4,0,1,0,2,2,3,2,4,0,3,0,4,1,2,1,3,1,4,3,4,0,2,4,0,1,2,0,1,3,0,1,4,1,2,3,1,2,4,2,3,4,0,3,4,0,1,2,3,1,2,3,4,0,1,3,4,0,2,3,1,3,4,0,1,2,4,0,2,3,4,0,1,2,3,4,共25=32(个).又满足AC的集合A有:,0,2,4,8,0,2,0,4,0,8,2,4,2,8,4,8,0,2,4,0,2,8,0,4,8,2,4,8,0,2,4,8,共24=16(个).其中同时满足AB,AC的有8个:,0,2,4,0,2,0,4,2,4,0,2,4,实际上到此就可看出,
19、上述解法太繁.解法二:题目只求集合A的个数,而未让说明A的具体元素,故可将问题等价转化为B、C的公共元素组成集合的子集数是多少.显然公共元素有0、2、4,组成集合的子集有23=8(个).点评:有关集合间关系的问题,常用分类讨论的思想来解决;关于集合的子集个数的结论要熟练掌握,其应用非常广泛.课堂小结本节课学习了:子集、真子集、空集、Venn图等概念;能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集;清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明.作业课本P11习题1.1A组5.设计感想本节教学设计注重引导学生通过类比来获得新知,在实际教学中,要留给学生适当的思考时间,使学生自己通过类比得到正确结论.丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念,学生的数学学习活动不能仅限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、合作交流、阅读自学等都应成为学生学习数学的重要方式.
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100