ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:394KB ,
资源ID:1365750      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1365750.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高二数学导数教学分析与建议.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高二数学导数教学分析与建议.doc

1、 高二导数教学分析与建议主要知识分析:一、 变化率与导数(一)平均变化率普通高中数学课程标准(实验)(以下简称课程标准)对本节的要求是:通过对大量实例的分析, 理解函数的平均变化率问题. 函数的平均变化率是导数这-章的基础内容, 应熟练掌握平均变化率的概念. 由于本节是这-章的开始, 高考对其还没有直接考查. 1. 平均变化率的概念 一般地, 对于函数y=f(x), 给定白变量的两个值, , 称x=-为函数自变量的改变量, 称y=f()-f()为函数值的改变量, 称为函数在区间, 上的平均变化率2. 平均变化率的几何意义 设A(, f(), B(,f()是曲线y=f (x)上任意不同的两点,

2、函数y =f(x)的平均变化率为割线AB的斜率, 如图注意:在平均变化率中, 当取定值后, x取不同的数值时, 函数的平均变化率不一定相同;当x取定值后, 取不同的数值时, 函数的平均变化率也不一定相同. 例1函数y=f(x)的图象如图所示, 则:(1)函数f(x)在区间上的平均变化率为_;(2)函数f(x)在区间0, 2上的平均变化率为_.(二)导数的概念课程标准对本节的要求是:通过对大量实例的分析, 经历由平均变化率过渡到瞬时变化率的过程;了解导数概念的实际背景, 知道瞬时变化率就是导数, 体会导数的思想及其内涵. 高考对本节内容的考查主要是导数的概念、瞬时速度等的理解, 一般不单独考查.

3、 1. 瞬时速度 我们知道, 做变速运动的物体在不同时刻的速度是不同的, 把物体在某一时刻的速度叫做瞬时速度(instantaneous velocity). 若物体运动的路程与时间的关系式是s=f(t), 当t趋近于0时, 函数f(t)在到+t之间的平均变化率趋近于常数, 我们就把这个常数叫做物体在时刻的瞬时速度. 2.导数概念: 一般地, 函数y=f(x)在x=处的瞬时变化率是, 我们称它为函数y=f (x)在x=处的导数(derivative),记作f()或y |x=, 即f()= .注意:根据定义求函数在点x=处的导数时, 首先要判断函数在x=处是否有定义;再看当x0时, 是否存在.

4、对于分段函数求导数问题, 应时刻注意定义域的“间断点”及“分段”的条件. 例2:若f(x)在x=处存在导数, 则 ( ) A. 与, h都有关 B. 仅与有关, 而与h无关 C. 仅与h有关, 而与无关 D. 与, h都无关(三)导数的几何意义课程标准对本节的要求是:能根据导数的定义, 求函数y=c, y=x, y=, y=的导数;能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 以导数公式、运算法则为载体, 考查导数的几何意义, 或与其他知识相交汇考查, 是近几年高考对本节知识考查的热点. 1. 导数的几何意义 如图, 函数f (x)在区间, +x上的平均变化率的几何

5、意义是割线PQ的斜率, 当点Q沿曲线y=f(x)趋近于点P时(即x趋近于O), 割线PQ绕点P转动, 它的最终位置为曲线在点P处的切线位置-直线PT因此, 函数y=f(x)在x=处的导数, 就是曲线y=f(x)在x=处的切线的斜率, 即.2. 导数与函数图象升降的关系(课本例2) 若函数y=f(x)在x=处的导数存在且f(x)0, 则函数y=f(x)在x=附近的图象是上升的;若f(x)0且a1);7. 若f(x)=Inx, 则f(x)= 8. 若f(x)=logax, 则f(x)= (a0,且a1).导数运算法则加、减、乘、除以及复合函数的导数运算法则。求复合函数导数的步骤求复合函数的导数,

6、-般按以下三个步骤进行:(1)适当选定中间变量, 正确分解复合关系, 即说明函数关系y=f(u), u=g(x);(2)分步求导(弄清每-步求导是哪个变量对哪个变量求导), 要特别注意中问变量对自变量求导, 即先求yu, 再求ux;(3)计算yuux, 并把中间变量代回原自变量(一般是x)的函数. 整个过程可简记为分解-求导-回代. 熟练以后, 可以省略中间过程. 注意:对一个函数求导时, 要紧扣导数运算法则, 联系基本初等函数的导数公式, 在不利于直接应用导数公式时, 可适当运用代数、三角恒等变换手段, 对函数进行化简, 然后求导. 这样可以减少运算量, 优化解题过程. 在复合函数中, 内层

7、函数的值域必须是外层函数定义域的子集.三、导数在研究函数中的应用(一)函数的单调性与导数课程标准对本节的要求是:结合实例, 借助几何直观探索并了解函数的单调性与其导数的正负的关系;能利用导数研究函数的单调性, 会求不超过三次的多项式函数的单调区间. 利用导数研究函数的单调性是导数最重要的应用之一, 因此是高考的重点内容, 一般在解答题中出现. 1. 函数的单调性与其导数的正负的关系在某个区间(a, b)内, 如果f(x)0, 则函数y=f(x)在这个区间内单调递增;如果f(x)0:(3)取(1), (2)的交集得f(x)的单调递增区问, 取(2)的补集与(1)的交集得f(x)的单调递减区间.

8、深入理解导数与单调性的关系 在某个区间内f(x)0(f(x)0. 函数的变化快慢与导数的关系一般地, 如果一个函数在某一范围内导数的绝对值较大, 那么函数在这个范围内变化得快, 这时函数的图象就比较“陡峭”(向上或向下);反之, 函数的图象就“平缓”一些. 例5 设f(x)是函数f (x)的导函数, 将y=f(x)和y=f(x)的图象画在同一直角坐标系中, 不可能正确的是研究一个函数的图象与其导函数图象之间的关系时, 注意抓住各自的关键要素, 对于原函数, 要重点考查其图象在哪个区间内单调递增, 在哪个区间内单调递减;而对于导函数, 则应考查其函数值在哪个区间内大于零, 在哪个区间内小于零,

9、并考查这些区间与原函数的单调区间是否一致. 常见题型:求含参数的函数的单调性;论含有参数的函数的单调性, 通常归结为求含参不等式的解集的问题, 而对含有参数的不等式, 要针对具体情况进行讨论, 但始终注意定义域对单调性的影响以及分类讨论的标准. 已知函数的单调性求参数的取值范围,已知f(x)在x区间D上单调, 求f(x)中参数的取值范围的方法为分离参数法:通常将f(x)0(或f(x)0)的参数分离, 转化为求最值问题, 从而求出参数的取值范围. 特别地,若为二次函数, 可以由0(或0)恒成立求出参数的取值范围. (二)函数的极值与导数课程标准对本节的要求是:结合函数的图象, 了解函数在某点处取

10、得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值. 利用导数研究函数的极值是高考对导数考查的-个重点内容, 并且经常与函数的单调性、函数的图象综合在-起考查, 题型既有选择题、填空题, 也有解答题. 1. 函数极值的概念 (1)若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小f(a)=0;而且在点x=a附近的左侧0, 就把点a叫做函数y=f(x)的极小值点, f(a)叫做函数y=f(x)的极小值. (2)若函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大f (b)=0;而且在点x=b附近的左侧0, 右侧.

11、 0, 右侧0, 那么f()是极大值;如果在附近的左侧0, 那么f()是极小值. 注意: 函数的极值是一个局部概念, 是某个点的函数值与它附近的函数值比较是最大的或是最小的. 在定义域的某个区间内极大值或极小值并不唯一, 也可能极值不存在, 并且极大值与极小值之闻无确定的大小关系. 函数的极值点是一个实数, 是函数取得极值时自变量的值, 而不是点. 函数的极值点一定出现在区间内部, 区间的端点不可能成为极值点. 根据极值的定义可知, 对于一个可导函数来说, 函数y =f(x)在处取得极值, 则它在该极值点处的导数值等于0, 但导数值为0的点不一定是函数的极值点.函数f(x)在点x。处取得极值的

12、充要条件是=0, 且在左、右两侧的符号不同.关于极值与极值点(让学生明白)极值点是指函数取得极值时对应点的横坐标, 即自变量的取值;而极值是函数值, 即函数取得极值时对应点的纵坐标, 二者不同. 解读导数与极值的关系(三)函数的最大(小)值与导数函数的最值与导数1. 函数y=f(x)在区间a, b上的最值 一般地, 如果在区间a, b上函数y=f(x)的图象是一条连续不断的曲线, 那么它必有最大值与最小值. 2. 函数最值的求法 求函数f(x)在闭区间a, b上的最值的步骤如下: (1)求函数y=f(x)在(a, b)内的极值; (2)将函数y=f(x)的各极值与端点处的函数值f(a), f(

13、b)比较, 其中最大的一个就是最大值, 最小的一个就是最小值. 3.极值与最值的区别与联系区别:(1)函数的极值是函数在局部区间上函数值的比较;函数的最值是函数在整个区间上函数值的比较, 即最大(小)值必须是整个区间上所有函数值的最大(小)者. (2)函数的极值可以有多个, 但最值只能有-个, 极值只能在区间内取得, 最值可以在区间端点处取得. 联系:如果在区间(a, b)上函数y=f(x)的图象是一条连续不断的曲线且只有一个极值点, 那么该极值点就是最值点, 这里区间(a, b)可以是无穷区间. 导数的作用:作为研究函数性质的一个工具导数解答题综合考查:函数与导数,导数在研究函数问题中的应用,突出考查单调区间、极值、最值问题.数学思想:化归与转化;函数与方程;数形结合;分类讨论。处理函数导数问题流程(程序):函数解析式函数定义域求导函数求导函数零点导函数符号变化表写函数单调区间为什么要求定义域?通常什么时候需要求定义域?求定义域的注意事项?通常都有哪些类型?求导的易错点有哪些?怎样整理函数导数式?求导函数零点通常都有哪些类型?是否一定有零点?零点及定义域边界或限定域的边界的大小关系?明确研究的范围是什么?判断符号的依据是什么?(基本初等函数图象和性质以及因式符号判断)有哪些注意事项?处理导数问题要过三关:求导关、方程关、转化关

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服