ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:236.34KB ,
资源ID:1364489      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1364489.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(轴对称中几何动点最值问题总结.doc)为本站上传会员【1587****927】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

轴对称中几何动点最值问题总结.doc

1、轴对称中几何动点最值问题总结轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:(1)两点之间线段最短;(2)三角形两边之和大于第三边;(3)垂线段最短。初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,一点两线三类线段和的最值问题。下面对三类线段和的最值问题进行分析、讨论。 (1) 两点一线的最值问题: (两个定点 + 一个动点) 问题特征:已知两个定点位于一条直线的同一侧,在直线

2、上求一动点的位置,使动点与定点线段和最短。核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。 方法:1.定点过动点所在直线做对称。 2.连结对称点与另一个定点,则直线段长度就是我们所求。变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。1.如图,直线和的同侧两点A、B,在直线上求作一点P,使PA+PB最小。 (2) 一点两线的最值问题: (两个动点+一个定点)问题特征:

3、已知一个定点位于平面内两相交直线之间,分别在两直线上确定两个动点使线段和最短。核心思路:这类问题实际上是两点两线段最值问题的变式,通过做这一定点关于两条线的对称点,实现“搬点移线”,把线段“移”到同一直线上来解决。变异类型:1.如图,点P是MON内的一点,分别在OM,ON上作点A,B。使PAB的周长最小。2.如图,点A是MON外的一点,在射线OM上作点P,使PA与点P到射线ON的距离之和最小。(3) 两点两线的最值问题: (两个动点+两个定点)问题特征:两动点,其中一个随另一个动(一个主动,一个从动),并且两动点间的距离保持不变。核心思路:用平移方法,可把两动点变成一个动点,转化为“两个定点和

4、一个动点”类型来解。变异类型:1.如图,点P,Q为MON内的两点,分别在OM,ON上作点A,B。使四边形PAQB的周长最小。 2. 如图,已知A(1,3),B(5,1),长度为2的线段PQ在x轴上平行移动,当AP+PQ+QB的值最小时,点P的坐标为( )(4) 两点两线的最值问题: (两个动点+两个定点)问题特征:两动点分别在两条直线上独立运动,一动点分别到一定点和另一动点的距离和最小。核心思路:利用轴对称变换,使一动点在另一动点的对称点与定点的线段上(两点之间线段最短),且这条线段垂直于另一动点的对称点所在直线(连接直线外一点与直线上各点的所有线段中,垂线段最短)时,两线段和最小,最小值等于

5、这条垂线段的长。变异类型:演变为多边形周长、折线段等最值问题。1. 如图,点A是MON内的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。二、常见题目 Part1、三角形1如图,在等边ABC中,AB=6,ADBC,E是AC上的一点,M是AD上的一点,且AE=2,求EM+EC的最小值。2如图,在锐角ABC中,AB=42,BAC45,BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是_。 3如图,ABC中,AB=2,BAC=30,若在AC、AB上各取一点M、N,使BM+MN的值最小,则这个最小值。Part2、正方形1如图,正方形ABCD的边长为8,M

6、在DC上,丐DM2,N是AC上的一动点,DNMN的最小值为_。 即在直线AC上求一点N,使DN+MN最小 。2如图所示,正方形ABCD的面积为12,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PDPE的和最小,则这个最小值为( ) A B C3 D3在边长为2的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则PBQ周长的最小值为_(结果不取近似值)。4如图,四边形ABCD是正方形, AB = 10cm,E为边BC的中点,P为BD上的一个动点,求PC+PE的最小值;Part3、矩形1如图,若四边形 ABCD 是矩形, AB = 10cm

7、,BC = 20cm,E 为边 BC 上的一个动点,P 为 BD 上的一个动点,求 PC+PD的最小值;Part4、菱形1如图,若四边形 ABCD 是菱形, AB=10cm,ABC=45,E 为边 BC 上的一个动点,P 为 BD 上的一个动点,求 PC+PE的最小值;Part5、直角梯形1已知直角梯形 ABCD 中,ADBC,ABBC,AD=2,BC=DC=5,点 P 在 BC 上秱动,则当 PA+PD 取最小值时,APD 中边 AP 上的高为( )Part6、一次函数一次函数 的图象与 轴分别交于点(1)求该函数的解析式;(2) 为坐标原点,设的中点分别为, 为 上一动点,求 的最小值,并求取得最小值时点坐标

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服