ImageVerifierCode 换一换
格式:DOC , 页数:21 ,大小:909.01KB ,
资源ID:1362570      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1362570.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(fluent中多孔介质设置问题和算例.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

fluent中多孔介质设置问题和算例.doc

1、经过痛苦的一段经历,终于将局部问题真相大白,为了使保位同仁不再经过我之痛苦,现在将本人多孔介质经验公布如下,希望各位能加精: 1。Gambit中划分网格之后,定义需要做为多孔介质的区域为fluid,与缺省的fluid分别开来,再定义其名称,我习惯将名称定义为porous; 2。在fluent中定义边界条件define-boundary condition-porous(刚定义的名称),将其设置边界条件为fluid,点击set按钮即弹出与fluid边界条件一样的对话框,选中porous zone与laminar复选框,再点击porous zone标签即出现一个带有滚动条的界面;

2、 3。porous zone设置方法: 1)定义矢量:二维定义一个矢量,第二个矢量方向不用定义,是与第一个矢量方向正交的;              三维定义二个矢量,第三个矢量方向不用定义,是与第一、二个矢量方向正交的; (如何知道矢量的方向:打开grid图,看看X,Y,Z的方向,如果是X向,矢量为1,0,0,同理Y向为0,1,0,Z向为0,0,1,如果所需要的方向与坐标轴正向相反,则定义矢量为负) 圆锥坐标与球坐标请参考fluent帮助。 2)定义粘性阻力1/a与内部阻力C2:请参看本人上一篇博文“终于搞清fluent中多孔粘性阻力与内部阻力的计算方法”,此处不赘述;

3、3)如果了定义粘性阻力1/a与内部阻力C2,就不用定义C1与C0,因为这是两种不同的定义方法,C1与C0只在幂率模型中出现,该处保持默认就行了; 4)定义孔隙率porousity,默认值1表示全开放,此值按实验测值填写即可。 完了,其他设置与普通k-e或RSM相同。总结一下,与君共享! Tutorial 7. Modeling Flow Through Porous Media Introduction Many industrial applications in

4、volve the modeling of flow through porous media, such as filters, catalyst beds, and packing. This tutorial illustrates how to set up and solve a problem involving gas flow through porous media. The industrial problem solved here involves gas flow through a catalytic converter. Catalytic converters

5、 are commonly used to purify emissions from gasoline and diesel engines by converting environmentally hazardous exhaust emissions to acceptable substances. Examples of such emissions include carbon monoxide (CO), nitrogen oxides (NOx), and unburned hydrocarbon fuels. These exhaust gas emissions are

6、 forced through a substrate, which is a ceramic structure coated with a metal catalyst such as platinum or palladium. The nature of the exhaust gas flow is a very important factor in determining the performance of the catalytic converter. Of particular importance is the pressure gradient and veloci

7、ty distribution through the substrate. Hence CFD analysis is used to design efficient catalytic converters: by modeling the exhaust gas flow, the pressure drop and the uniformity of flow through the substrate can be determined. In this tutorial, FLUENT is used to model the flow of nitrogen gas throu

8、gh a catalytic converter geometry, so that the flow field structure may be analyzed. This tutorial demonstrates how to do the following: _ Set up a porous zone for the substrate with appropriate resistances. _ Calculate a solution for gas flow through the catalytic converter using the pressure ba

9、sed solver. _ Plot pressure and velocity distribution on specified planes of the geometry. _ Determine the pressure drop through the substrate and the degree of non-uniformity of flow through cross sections of the geometry using X-Y plots and numerical reports. Problem Description The catalytic

10、converter modeled here is shown in Figure 7.1. The nitrogen flows in through the inlet with a uniform velocity of 22.6 m/s, passes through a ceramic monolith substrate with square shaped channels, and then exits through the outlet. While the flow in the inlet and outlet sections is turbulent, t

11、he flow through the substrate is laminar and is characterized by inertial and viscous loss coefficients in the flow (X) direction. The substrate is impermeable in other directions, which is modeled using loss coefficients whose values are three orders of magnitude higher than in the X direction. Se

12、tup and Solution Step 1: Grid 1. Read the mesh file (catalytic converter.msh). File /Read /Case... 2. Check the grid. Grid /Check FLUENT will perform various checks on the mesh and report the progress in the console. Make sure that the minimum volume reported is a positive number. 3. Scale

13、the grid. Grid! Scale... (a) Select mm from the Grid Was Created In drop-down list. (b) Click the Change Length Units button. All dimensions will now be shown in millimeters. (c) Click Scale and close the Scale Grid panel. 4. Display the mesh. Display /Grid... (a) Make sure that inlet, o

14、utlet, substrate-wall, and wall are selected in the Surfaces selection list. (b) Click Display. (c) Rotate the view and zoom in to get the display shown in Figure 7.2. (d) Close the Grid Display panel. The hex mesh on the geometry contains a total of 34,580 cells. Step 2: Models 1. Retain th

15、e default solver settings. Define /Models /Solver... 2. Select the standard k-ε turbulence model. Define/ Models /Viscous... Step 3: Materials 1. Add nitrogen to the list of fluid materials by copying it from the Fluent Database for materials. Define /Materials... (a) Click the Fl

16、uent Database... button to open the Fluent Database Materials panel. i. Select nitrogen (n2) from the list of Fluent Fluid Materials. ii. Click Copy to copy the information for nitrogen to your list of fluid materials. iii. Close the Fluent Database Materials panel. (b) Close the Materials pan

17、el. Step 4: Boundary Conditions. Define /Boundary Conditions... 1. Set the boundary conditions for the fluid (fluid). (a) Select nitrogen from the Material Name drop-down list. (b) Click OK to close the Fluid panel. 2. Set the boundary conditions for the substrate (substrate). (a) Sele

18、ct nitrogen from the Material Name drop-down list. (b) Enable the Porous Zone option to activate the porous zone model. (c) Enable the Laminar Zone option to solve the flow in the porous zone without turbulence. (d) Click the Porous Zone tab. i. Make sure that the principal direction vectors are

19、 set as shown in Table7.1. Use the scroll bar to access the fields that are not initially visible in the panel. ii. Enter the values in Table 7.2 for the Viscous Resistance and Inertial Resistance. Scroll down to access the fields that are not initially visible in the panel. (e) Click OK to cl

20、ose the Fluid panel. 3. Set the velocity and turbulence boundary conditions at the inlet (inlet). (a) Enter 22.6 m/s for the Velocity Magnitude. (b) Select Intensity and Hydraulic Diameter from the Specification Method dropdown list in the Turbulence group box. (c) Retain the default value of

21、10% for the Turbulent Intensity. (d) Enter 42 mm for the Hydraulic Diameter. (e) Click OK to close the Velocity Inlet panel. 4. Set the boundary conditions at the outlet (outlet). (a) Retain the default setting of 0 for Gauge Pressure. (b) Select Intensity and Hydraulic Diameter from the Spec

22、ification Method dropdown list in the Turbulence group box. (c) Enter 5% for the Backflow Turbulent Intensity. (d) Enter 42 mm for the Backflow Hydraulic Diameter. (e) Click OK to close the Pressure Outlet panel. 5. Retain the default boundary conditions for the walls (substrate-wall and wall) a

23、nd close the Boundary Conditions panel. Step 5: Solution 1. Set the solution parameters. Solve /Controls /Solution... (a) Retain the default settings for Under-Relaxation Factors. (b) Select Second Order Upwind from the Momentum drop-down list in the Discretization group box. (c) Click OK t

24、o close the Solution Controls panel. 2. Enable the plotting of residuals during the calculation. Solve/Monitors /Residual... (a) Enable Plot in the Options group box. (b) Click OK to close the Residual Monitors panel. 3. Enable the plotting of the mass flow rate at the outlet. Solve / Mo

25、nitors /Surface... (a) Set the Surface Monitors to 1. (b) Enable the Plot and Write options for monitor-1, and click the Define... button to open the Define Surface Monitor panel. i. Select Mass Flow Rate from the Report Type drop-down list. ii. Select outlet from the Surfaces selection list

26、 iii. Click OK to close the Define Surface Monitors panel. (c) Click OK to close the Surface Monitors panel. 4. Initialize the solution from the inlet. Solve /Initialize /Initialize... (a) Select inlet from the Compute From drop-down list. (b) Click Init and close the Solution Initializ

27、ation panel. 5. Save the case file (catalytic converter.cas). File /Write /Case... 6. Run the calculation by requesting 100 iterations. Solve /Iterate... (a) Enter 100 for the Number of Iterations. (b) Click Iterate. The FLUENT calculation will converge in approximately 70 iterations.

28、 By this point the mass flow rate monitor has attended out, as seen in Figure 7.3. (c) Close the Iterate panel. 7. Save the case and data files (catalytic converter.cas and catalytic converter.dat). File /Write /Case & Data... Note: If you choose a file name that already exists in the current

29、folder, FLUENT will prompt you for confirmation to overwrite the file. Step 6: Post-processing 1. Create a surface passing through the centerline for post-processing purposes. Surface/Iso-Surface... (a) Select Grid... and Y-Coordinate from the Surface of Constant drop-down lists. (b) Click C

30、ompute to calculate the Min and Max values. (c) Retain the default value of 0 for the Iso-Values. (d) Enter y=0 for the New Surface Name. (e) Click Create. 2. Create cross-sectional surfaces at locations on either side of the substrate, as well as at its center. Surface /Iso-Surface...

31、 (a) Select Grid... and X-Coordinate from the Surface of Constant drop-down lists. (b) Click Compute to calculate the Min and Max values. (c) Enter 95 for Iso-Values. (d) Enter x=95 for the New Surface Name. (e) Click Create. (f) In a similar manner, create surfaces named x=130 and x=165 with

32、 Iso-Values of 130 and 165, respectively. Close the Iso-Surface panel after all the surfaces have been created. 3. Create a line surface for the centerline of the porous media. Surface /Line/Rake... (a) Enter the coordinates of the line under End Points, using the starting coordinate of (95, 0,

33、 0) and an ending coordinate of (165, 0, 0), as shown. (b) Enter porous-cl for the New Surface Name. (c) Click Create to create the surface. (d) Close the Line/Rake Surface panel. 4. Display the two wall zones (substrate-wall and wall). Display /Grid... (a) Disable the Edges option. (b) En

34、able the Faces option. (c) Deselect inlet and outlet in the list under Surfaces, and make sure that only substrate-wall and wall are selected. (d) Click Display and close the Grid Display panel. (e) Rotate the view and zoom so that the display is similar to Figure 7.2. 5. Set the lighting for th

35、e display. Display /Options... (a) Enable the Lights On option in the Lighting Attributes group box. (b) Retain the default selection of Gourand in the Lighting drop-down list. (c) Click Apply and close the Display Options panel. 6. Set the transparency parameter for the wall zones (substrat

36、e-wall and wall). Display/Scene... (a) Select substrate-wall and wall in the Names selection list. (b) Click the Display... button under Geometry Attributes to open the Display Properties panel. i. Set the Transparency slider to 70. ii. Click Apply and close the Display Properties panel. (

37、c) Click Apply and then close the Scene Description panel. 7. Display velocity vectors on the y=0 surface. Display /Vectors... (a) Enable the Draw Grid option. The Grid Display panel will open. i. Make sure that substrate-wall and wall are selected in the list under Surfaces. ii. Click Di

38、splay and close the Display Grid panel. (b) Enter 5 for the Scale. (c) Set Skip to 1. (d) Select y=0 from the Surfaces selection list. (e) Click Display and close the Vectors panel. The flow pattern shows that the flow enters the catalytic converter as a jet, with recirculation on either side o

39、f the jet. As it passes through the porous substrate, it decelerates and straightens out, and exhibits a more uniform velocity distribution. This allows the metal catalyst present in the substrate to be more effective. Figure 7.4: Velocity Vectors on the y=0 Plane 8. Display filled contours o

40、f static pressure on the y=0 plane. Display /Contours... (a) Enable the Filled option. (b) Enable the Draw Grid option to open the Display Grid panel. i. Make sure that substrate-wall and wall are selected in the list under Surfaces. ii. Click Display and close the Display Grid panel. (c) Ma

41、ke sure that Pressure... and Static Pressure are selected from the Contours of drop-down lists. (d) Select y=0 from the Surfaces selection list. (e) Click Display and close the Contours panel. Figure 7.5: Contours of the Static Pressure on the y=0 plane The pressure changes rapidly in the midd

42、le section, where the fluid velocity changes as it passes through the porous substrate. The pressure drop can be high, due to the inertial and viscous resistance of the porous media. Determining this pressure drop is a goal of CFD analysis. In the next step, you will learn how to plot the pressure d

43、rop along the centerline of the substrate. 9. Plot the static pressure across the line surface porous-cl. Plot /XY Plot... (a) Make sure that the Pressure... and Static Pressure are selected from the Y Axis Function drop-down lists. (b) Select porous-cl from the Surfaces selection list. (c) C

44、lick Plot and close the Solution XY Plot panel. Figure 7.6: Plot of the Static Pressure on the porous-cl Line Surface In Figure 7.6, the pressure drop across the porous substrate can be seen to be roughly 300 Pa. 10. Display filled contours of the velocity in the X direction on the x=95, x=130

45、and x=165 surfaces. Display /Contours... (a) Disable the Global Range option. (b) Select Velocity... and X Velocity from the Contours of drop-down lists. (c) Select x=130, x=165, and x=95 from the Surfaces selection list, and deselect y=0. (d) Click Display and close the Contours panel. The

46、velocity profile becomes more uniform as the fluid passes through the porous media. The velocity is very high at the center (the area in red) just before the nitrogen enters the substrate and then decreases as it passes through and exits the substrate. The area in green, which corresponds to a moder

47、ate velocity, increases in extent. Figure 7.7: Contours of the X Velocity on the x=95, x=130, and x=165 Surfaces 11. Use numerical reports to determine the average, minimum, and maximum of the velocity distribution before and after the porous substrate. Report /Surface Integrals... (a) Selec

48、t Mass-Weighted Average from the Report Type drop-down list. (b) Select Velocity and X Velocity from the Field Variable drop-down lists. (c) Select x=165 and x=95 from the Surfaces selection list. (d) Click Compute. (e) Select Facet Minimum from the Report Type drop-down list and click Compute a

49、gain. (f) Select Facet Maximum from the Report Type drop-down list and click Compute again. (g) Close the Surface Integrals panel. The numerical report of average, maximum and minimum velocity can be seen in the main FLUENT console, as shown in the following example: The spread between the ave

50、rage, maximum, and minimum values for X velocity gives the degree to which the velocity distribution is non-uniform. You can also use these numbers to calculate the velocity ratio (i.e., the maximum velocity divided by the mean velocity) and the space velocity (i.e., the product of the mean velocity

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服