ImageVerifierCode 换一换
格式:PPT , 页数:46 ,大小:715.50KB ,
资源ID:13188582      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/13188582.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(ABAQUS声学分析-acoustics-lecture6.ppt)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

ABAQUS声学分析-acoustics-lecture6.ppt

1、Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,Copyright 2005 ABAQUS,Inc.,Structural-Acoustic Analysis with ABAQUS,L6.,*,Structural-Acoustic Analysis with ABAQUS,Additional Examples,Lecture 6,深圳,ABAQUS,培训,深圳,ANSYS,培训,深圳,ANSYS,深圳,AB

2、AQUS,深圳有限元培训,ABAQUS,培训,ANSYS,培训,Structural-Acoustic Analysis with ABAQUS,Overview,Sloshing,Effect of Surface Treatments on Room Acoustics,Nonlinear Structural Behavior,Coupled Piezoelectric and Acoustic Analysis,Acoustics of a Truck Cab:Fully Coupled Analysis,Acoustics of a Truck Cab:Sequential Anal

3、ysis,Summary,Structural-Acoustic Analysis with ABAQUS,Sloshing,Structural-Acoustic Analysis with ABAQUS,Sloshing,Spherical acoustic radiation in Mode 1,Reference:Junger,M.C.and Feit,D.,Sound,Structures,and Their Interaction,MIT Press,pp.200-203,1972.,Physical Description:,A steel(,r,=,7800,kg/m,3,E,

4、210,GPa,n,=,0.3,)spherical shell of radius,1,m and thickness,0.05,m is immersed in an infinite volume of air(,r,=,1.25,kg/m,3,K,=,128000,Pa,c,=,320,m/s).,The sphere is driven as a rigid body to excite mode 1 using the,*BOUNDARY,TYPE=DISPLACEMENT,option.,A frequency range of,10,Hz to,204,Hz,corresp

5、onding to,ka,0.2,to,4.0,is analyzed using,*STEADY STATE DYNAMICS,DIRECT,.,Nonconforming shell(,S8R,)and acoustic infinite element(,ACIN3D4,)meshes are used,.,Fluid-solid coupling through use of the,*TIE,option.,Structural-Acoustic Analysis with ABAQUS,Sloshing,Meshes(shells in orange),Structural-Aco

6、ustic Analysis with ABAQUS,Sloshing,Pressure magnitudes at 158.7 Hz,Structural-Acoustic Analysis with ABAQUS,Sloshing,Pressure magnitude results,freq(Hz)ka Node 1776 Node 35 Analytical,10.0000000 0.196349541 2.51556000 2.51671000 2.51404729 12.8569000 0.252444641 4.20656000 4.20854000 4.20443148 16.

7、5300000 0.324565791 7.08098000 7.08441000 7.07835582 21.2524000 0.417289898 12.0325000 12.0386000 12.0302351 27.3239000 0.536503522 20.6916000 20.7026000 20.6920596 35.1301000 0.689777900 35.9806000 36.0014000 35.9879477 45.1664000 0.886840190 62.6031000 62.6415000 62.6105015 58.0699000 1.14019982 1

8、05.856000 105.924000 105.798479 74.6598000 1.46594174 166.575000 166.689000 166.273101 95.9893000 1.88474550 238.751000 238.874000 237.975417 123.412000 2.42318895 319.106000 319.087000 317.622889 158.670000 3.11547816 412.658000 412.448000 410.202606 204.000000 4.00553063 528.079000 527.194000 524.

9、385853,Analytical solution:,Structural-Acoustic Analysis with ABAQUS,Effect of Surface Treatments on Room Acoustics,Structural-Acoustic Analysis with ABAQUS,Effect of Surface Treatments on Room Acoustics,Example:Small room coupled to inlet and exhaust ducts.,Uniform forcing at inlet end.,Exhaust to

10、exterior modeled using a small hemisphere of air and the spherical radiation condition.,At the frequency shown,the inlet excitation has excited a standing wave in the room.,Structural-Acoustic Analysis with ABAQUS,Effect of Surface Treatments on Room Acoustics,Acoustic-only mesh of room,ducts,and ex

11、terior;no treatment:,Structural-Acoustic Analysis with ABAQUS,Effect of Surface Treatments on Room Acoustics,Add acoustic treatments to ceiling,wall,and floor of room:,Structural-Acoustic Analysis with ABAQUS,Effect of Surface Treatments on Room Acoustics,With acoustic treatment:,Structural-Acoustic

12、 Analysis with ABAQUS,Nonlinear Structural Behavior,Structural-Acoustic Analysis with ABAQUS,Nonlinear Structural Behavior,Structural analysis can include effects from several sources of nonlinearity:,Material nonlinearities,Examples:Metal plasticity,crushable foam,Geometric nonlinearities,Examples:

13、Pre-tensioning of a cable,snap-through behavior of an arch,Contact nonlinearities,Contact is inherently nonlinear because the contact constraints are either on or off;they do not vary smoothly.,Structural-Acoustic Analysis with ABAQUS,Nonlinear Structural Behavior,Multistep analysis,General,analysis

14、 steps can have linear or nonlinear behavior.,The end condition of one general step provides the base state for the next general step.,If an earlier general step includes nonlinear behavior,the nonlinear solution is included in subsequent steps.,Acoustic analysis includes the effects of previous non

15、linear general steps.,The most obvious effect is aligning the acoustic region with the deformed shape of the structure,including contact regions.,Less obvious is the change in material properties,such as stiffness.,Structural-Acoustic Analysis with ABAQUS,Nonlinear Structural Behavior,Example:Sound

16、transmission through a rubber door seal.,Step 1,:Static structural analysis to deform the rubber seal into its final position.,Rigid surface moves upward,causing the rubber to deform.,Acoustic mesh is automatically updated based with the use of adaptive meshing.,Air,Rigid surface,Rubber seal,d,Struc

17、tural-Acoustic Analysis with ABAQUS,Nonlinear Structural Behavior,Step 2,:Steady-state dynamic analysis of the fully coupled system.,The air and the rubber interact through their tied surfaces.,Acoustic pressure is applied as a boundary condition to left side of the air mesh.,Deformed seal in acoust

18、ic medium,Contours of acoustic pressure,Structural-Acoustic Analysis with ABAQUS,Coupled Piezoelectric and Acoustic Analysis,Structural-Acoustic Analysis with ABAQUS,Coupled Piezoelectric and Acoustic Analysis,Piezoelectric analysis,An electric potential gradient causes straining,and stress causes a

19、n electric potential gradient.,Piezoelectric analysis by itself is a coupled electrical-stress analysis.,Can be combined in a model with acoustic elements and the necessary structural-acoustic coupling.,Often used in acoustics applications,such as speakers.,Solved using,*FREQUENCY,*MODAL DYNAMIC,*ST

20、EADY STATE DYNAMICS,or,*STATIC,.,Structural-Acoustic Analysis with ABAQUS,Coupled Piezoelectric and Acoustic Analysis,Example:fluid-coupled motion of a transducer,Half-axisymmetric model of piezoelectric solid,brass head mass,and fluid:,fluid,piezoelectric material,head mass,Structural-Acoustic Anal

21、ysis with ABAQUS,Coupled Piezoelectric and Acoustic Analysis,Apply electrical forcing across piezoelectric material using the,*,DSECHARGE or,*,DECHARGE options.,Couple acoustic fluid to the head mass solid elements using TIE constraints.,Use water properties and fluid elements to approximate human t

22、issue.,Model radiation into the fluid exterior using the spherical boundary impedance(,*,IMPEDANCE PROPERTY,TYPE=SPHERICAL).,Sweep through frequencies using the,*,STEADY STATE DYNAMICS,DIRECT procedure to find onset of degraded transduction due to head mass vibration.,Structural-Acoustic Analysis wi

23、th ABAQUS,Coupled Piezoelectric and Acoustic Analysis,Acoustic pressure at 36866 Hz:,Structural-Acoustic Analysis with ABAQUS,Coupled Piezoelectric and Acoustic Analysis,Acoustic pressure at 37342 Hz:Head mass mode distorts acoustic field.,Structural-Acoustic Analysis with ABAQUS,Acoustics of a Truc

24、k Cab:Fully Coupled Analysis,Structural-Acoustic Analysis with ABAQUS,Acoustics of a Truck Cab:Fully Coupled Analysis,The objective is to show the acoustic field in and surrounding a model truck cab due to the effect of loudspeakers.,Cab structure is mounted on four elastic point-mounts,modeled as s

25、prings.,Rest of truck is omitted from this analysis.,Interior and exterior air are meshed automatically using tetrahedral elements.,Exterior radiation is modeled using spherical radiation impedance.,Cab structure is modeled using shells and solids(for dashboard and seat).,Acoustic excitation due to

26、loudspeakers inside cab is modeled as concentrated loads on the acoustic fluid.,Structural-Acoustic Analysis with ABAQUS,Acoustics of a Truck Cab:Fully Coupled Analysis,Exterior and interior fluid meshes are shown here.,Neither mesh matches the cab shell mesh node-to-node.,Each is modeled as a separ

27、ate part and coupled using the TIE constraints.,Structural-Acoustic Analysis with ABAQUS,Acoustics of a Truck Cab:Fully Coupled Analysis,In exterior problems it is good practice to inspect the phase of the acoustic pressure at the,lowest,frequency of interest to see if the radiation condition is per

28、forming properly.,If the radiation condition is applied incorrectly,absent,or too close to the acoustic sources,the phase contours will show distortion near the boundary.Here,the contours look all right.,Structural-Acoustic Analysis with ABAQUS,Acoustics of a Truck Cab:Fully Coupled Analysis,The,dir

29、ect,steady-state dynamics procedure is used to solve the coupled fluid-solid problem at 90 frequencies.,Using ABAQUS/Viewer,we observe a peak in the structural motion amplitude at 110Hz.,This involves large motions of the windshield and other panels.,Structural-Acoustic Analysis with ABAQUS,Acoustic

30、s of a Truck Cab:Fully Coupled Analysis,The interior acoustic pressure field,POR(dB)at this frequency:,Structural-Acoustic Analysis with ABAQUS,Acoustics of a Truck Cab:Fully Coupled Analysis,The exterior field shows radiation primarily to the front and top,with a peak underneath the cab.,Structural

31、Acoustic Analysis with ABAQUS,Acoustics of a Truck Cab:Fully Coupled Analysis,Another structural peak amplitude occurs at 298 Hz,directly at the location of the acoustic source.,Again,side and windshield panel motions are the most pronounced.,Structural-Acoustic Analysis with ABAQUS,Acoustics of a

32、Truck Cab:Fully Coupled Analysis,The exterior field at this frequency(298 Hz)shows radiation from the windshield and side panels.,Structural-Acoustic Analysis with ABAQUS,Acoustics of a Truck Cab:Sequential Analysis,Structural-Acoustic Analysis with ABAQUS,Acoustics of a Truck Cab:Sequential Analysi

33、s,Example:Truck cab problem using sequential analysis,Three variations are discussed here.They differ only in the analysis procedure used for the global model.,Method,Global model,Submodel,1,Direct steady-state dynamics,Direct steady-state dynamics,2,Frequency extraction,Modal steady-state dynamics,

34、Direct steady-state dynamics,3,Frequency extraction,Subspace projection steady-state dynamics,Direct steady-state dynamics,Structural-Acoustic Analysis with ABAQUS,Acoustics of a Truck Cab:Sequential Analysis,First method:Direct steady-state dynamics in both analyses,Global model:,Define node sets a

35、nd element sets as described previously,and save the needed results to the output database(,.odb,)or results(,.fil,)file.,Use direct steady-state dynamics over the desired frequency range.,Submodel:,Use direct steady-state dynamics over the same frequency range or a subset of this range.,Structural-

36、Acoustic Analysis with ABAQUS,Acoustics of a Truck Cab:Sequential Analysis,Computed pore pressure(POR dB)for exterior(below)and interior(next page)acoustic fields are nearly identical to the fully coupled results.,Global:,Direct steady-state dynamics,Submodel:,Direct steady-state dynamics,Fully coup

37、led,Sequentially coupled,Structural-Acoustic Analysis with ABAQUS,Nearly identical behavior due to the low force amplitude exerted on the structure by the air.,Acoustics of a Truck Cab:Sequential Analysis,Fully coupled,Sequentially coupled,Global:,Direct steady-state dynamics,Submodel:,Direct steady

38、state dynamics,Structural-Acoustic Analysis with ABAQUS,Acoustics of a Truck Cab:Sequential Analysis,Second method:Natural frequency extraction followed by modal steady-state dynamics in the global model,Compute eigenmodes of the uncoupled structural system.,Run the steady-state procedure at these

39、frequencies,and use these results as the forcing functions for the submodel analysis.,This procedure will IGNORE any damping due to structural material properties,but modal damping can be applied.,Subsequently,use direct steady-state dynamics for the acoustics submodel.,Structural-Acoustic Analysis

40、with ABAQUS,Acoustics of a Truck Cab:Sequential Analysis,First eigenmode of the uncoupled,undamped structural system is at 108 Hz(using frequency extraction procedure):,Global:,Modal steady-state dynamics,Submodel:,Direct steady-state dynamics,Structural-Acoustic Analysis with ABAQUS,Acoustics of a

41、Truck Cab:Sequential Analysis,The modal steady-state dynamics procedure yields the following solution(displacement magnitudes)at this frequency:,Fully coupled:110 Hz,Sequentially coupled:108 Hz,Global:,Modal steady-state dynamics,Submodel:,Direct steady-state dynamics,Structural-Acoustic Analysis wi

42、th ABAQUS,Acoustics of a Truck Cab:Sequential Analysis,The direct steady-state dynamics procedure is used in the submodel at the same frequency(interior and exterior air shown):,Fully coupled,Sequentially coupled,Global:,Modal steady-state dynamics,Submodel:,Direct steady-state dynamics,Structural-A

43、coustic Analysis with ABAQUS,Acoustics of a Truck Cab:Sequential Analysis,Third method:Natural frequency extraction followed by subspace projection steady-state dynamics in the global model,The natural frequencies and mode shapes are computed as in the previous procedure.,The subspace projection ste

44、ady-state dynamics procedure is used for the global model.,This procedure differs from the modal steady-state dynamics procedure in that the original system of finite element equations,including structural damping terms,is projected onto the eigenmodes.,Structural-Acoustic Analysis with ABAQUS,Acous

45、tics of a Truck Cab:Sequential Analysis,The structural responses are reduced compared to those from the modal dynamics procedure(displacement magnitudes shown).,Global:,Subspace steady-state dynamics,Submodel:,Direct steady-state dynamics,Fully coupled,Sequentially coupled,Structural-Acoustic Analys

46、is with ABAQUS,The submodel acoustic responses are also reduced.,Acoustics of a Truck Cab:Sequential Analysis,Fully coupled,Sequentially coupled,Global:,Subspace steady-state dynamics,Submodel:,Direct steady-state dynamics,Structural-Acoustic Analysis with ABAQUS,Summary,Structural-Acoustic Analysis

47、 with ABAQUS,Summary,Direct steady-state dynamics using a fully coupled model provides the greatest fidelity:structural damping and structural-acoustic coupling are included.,Sequential procedures neglect the transfer of momentum between solids and fluid during the initial(“global”)step.,This permit

48、s the structure and acoustic problems to be solved in sequence.,Of the sequential procedure alternatives,the use of direct steady-state dynamics in both the global and submodel analyses allows the greatest fidelity:only the fluid-solid coupling effect is neglected.,Using subspace projection steady-s

49、tate dynamics for the global analysis permits individual modes of the structure to be emphasized in the analysis,and the corresponding acoustic field in the submodel to be computed.,The same is true of using modal steady-state dynamics in the global analysis,but structural damping effects are not included.,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服