ImageVerifierCode 换一换
格式:PPT , 页数:25 ,大小:354KB ,
资源ID:13187753      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/13187753.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(离散数学 图的矩阵表示.ppt)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

离散数学 图的矩阵表示.ppt

1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,*,7.3,图的矩阵表示,无向图的关联矩阵,有向图的关联矩阵,有向图的邻接矩阵,有向图的可达矩阵,1,无向图的关联矩阵,定义,设无向图,G,=,V,=,v,1,v,2,v,n,E,=,e,1,e,2,e,m,令,m,ij,为,v,i,与,e,j,的关联次数,称,(,m,ij,),n,m,为,G,的关联矩阵,,记为,M,(,G,).,2,例,:,求下图,G,的关联矩阵,上图,G,的关联矩阵,:,3,无向图的关联矩阵,性质:,(,5,)当且仅当,v,i,为孤立点。,4,有向图的关联矩阵,定义,设无环有向图,

2、D,=,V,=,v,1,v,2,v,n,E,=,e,1,e,2,e,m,令,则称,(,m,ij,),n,m,为,D,的关联矩阵,,记为,M,(,D,).,5,例,:,求图,G,的关联矩阵。,上图,G,的关联矩阵,:,6,有向图的关联矩阵,(,续,),性质,(4),平行边对应的列相同,7,定义,设有向图,D,=,V,=,v,1,v,2,v,n,E,=,e,1,e,2,e,m,令 为顶点,v,i,邻接到顶点,v,j,边的条数,称,(),m,n,为,D,的邻接矩阵,记作,A,(,D,),简记为,A,.,有向图的邻接矩阵,8,求下图,G,的邻接矩阵,。,解,上图,G,的邻接矩阵。,给出了图,G,的邻接

3、矩阵,就等于给出了图,G,的全部,信息。图的性质可以由矩阵,A,通过运算而获得,。,9,定义,设有向图,D,=,V,=,v,1,v,2,v,n,E,=,e,1,e,2,e,m,令 为顶点,v,i,邻接到顶点,v,j,边的条数,称,(),m,n,为,D,的邻接矩阵,记作,A,(,D,),简记为,A,.,性质,有向图的邻接矩阵,10,D,中的通路及回路数,定理,设,A,为,n,阶有向图,D,的邻接矩阵,则,A,l,(,l,1),中,元素,为,D,中,v,i,到,v,j,长度为,l,的通路数,,为,v,i,到自身长度为,l,的回路数,,为,D,中长度为,l,的通路总数,,为,D,中长度为,l,的回路

4、总数,.,11,D,中的通路及回路数,(,续,),例 有向图,D,如图所示,求,A,A,2,A,3,A,4,并回答诸问题:,(1),D,中长度为,1,2,3,4,的通路各有多,少条?其中回路分别为多少条?,(2),D,中长度小于或等于,4,的通路为多,少条?其中有多少条回路?,推论,设,B,l,=,A,+,A,2,+,A,l,(,l,1),则,B,l,中元素,为,D,中长度小于或等于,l,的通路数,,为,D,中长度小于或等于,l,的回路数,.,12,例,(续),长度 通路 回路,合计,50 8,1,8 1,2,11 3,3,14 1,4,17 3,13,在下图中,v,1,到,v,3,长度为,1

5、2,、,3,、,4,的通路分别有多少条,,G,中共有长度为,4,的通路多少条,其中回路多少条,长度小于等于,4,的通路共有多少条,其中回路多少条。,14,解,:,因为,15,所以,由,v,1,到,v,3,长度为,1,、,2,、,3,、,4,的通路分别有,0,、,2,、,2,、,4,条,,G,中共有长度为,4,的通路,43,条,其中回路,11,条,长度小于等于,4,的通路共有,87,条,其中回路,22,条。,注 无向图也有相应的邻接矩阵,一般只考虑简单图,无向图的邻接矩阵是对称的,其性质基本与有向图邻接矩阵的性质相同。,16,例如,:,下图邻接矩阵为:,17,有向图的可达矩阵,称,(,p,

6、ij,),n,n,为,D,的可达矩阵,记作,P,(,D,),简记为,P,.,性质,:,P,(,D,),主对角线上的元素全为,1.,D,强连通当且仅当,P,(,D,),的元素全为,1.,定义,设,D,=,为有向图,V,=,v,1,v,2,v,n,令,18,有向图的可达矩阵,(,续,),例 右图所示的有向图,D,的可达矩阵为,19,设,G,=,V,E,是,n,阶简单有向图,,V,=,v,1,v,2,v,n,,由可达性矩阵的定义知,当,i,j,时,如果,v,i,到,v,j,有路,则,p,ij,=1,;,如果,v,i,到,v,j,无通路,则,p,ij,=0,;,又如果,v,i,到,v,j,有通路,则必

7、存在长度小于等于,n,1,的通路。,又,n,阶图中,任何回路的长度不大于,n,,如下计算图,G,的可达性矩阵,P,:,B,=,E,+,A,+,A,2,+,A,n,-1,=(,b,ij,),n,n,其中,E,是单位矩阵。则,20,图,9.24,邻接矩阵,A,和,A,2,,,A,3,,,A,4,如下:,21,22,则图,G,的可达性矩阵,B,=,A,0,A,A,2,A,3,A,4,=,P,=,23,可达性矩阵用来描述有向图的一个结点到另一个结点是否有路,即是否可达。无向图也可以用矩阵描述一个结点到另一个结点是否有路。在无向图中,如果结点之间有路,称这两个结点连通,不叫可达。所以把描述一个结点到另一个结点是否有路的矩阵叫连通矩阵,而不叫可达性矩阵。,24,定义,设,G,=,V,E,是简单无向图,,V,=,v,1,v,2,v,n,P,(,G,)=(,p,ij,),n,n,其中:,i,j,=1,n,称,P,(,G,),为,G,的连通矩阵。简记为,P,。,无向图的邻接矩阵是对称阵,无向图的连通矩阵也是对称阵。求连通矩阵的方法与可达性矩阵类似。,25,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服