ImageVerifierCode 换一换
格式:PPT , 页数:23 ,大小:655KB ,
资源ID:13174746      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/13174746.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(数学建模微分方程模型(二).ppt)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数学建模微分方程模型(二).ppt

1、微分方程案例选讲,背景,年,1625 1830 1930 1960 1974 1987 1999,人口,(,亿,)5 10 20 30 40 50 60,世界人口增长概况,中国人口增长概况,年,1908 1933 1953 1964 1982 1990 1995 2000,人口,(,亿,)3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0,研究人口变化规律,控制人口过快增长,案例一,如何预报人口的增长,表,1,美国人口统计数据,年(公元),人口,(,百万),1790,3.9,1800,5.3,1810,7.2,1820,9.6,1830,12.9,1840,17.1,185

2、0,23.2,1860,31.4,年(公元),人口,(,百万),1870,38.6,1880,50.2,1890,62.9,1900,76.0,1910,92.0,1920,106.5,1930,123.2,1940,131.7,年(公元),人口,(,百万),1950,150.7,1960,179.3,1970,204.0,1980,226.5,1990,251.4,2000,281.4,下面介绍两个最基本的人口模型,并利用表,1,给出的近两百年的美国人口统计数据,对模型做出检验,最后用它预报,2010,年美国人口,指数增长模型,马尔萨斯提出,(,1798,),常用的计算公式,x,(,t,),

3、时刻,t,的,人口,基本假设,:,人口,(,相对,),增长率,r,是常数,今年人口,x,0,年增长率,r,k,年后人口,随着时间增加,人口按指数规律无限增长,指数增长模型,参数估计,(,r,x,0,),专家估计;利用实际数据作拟合,r,=0.2743/10,年,x,0,=4.1884,美国,1790,年至,1900,年数据,r,=0.2022/10,年,x,0,=6.0450,美国,1790,年至,2000,年数据,线性最小二乘法,指数增长模型的应用及局限性,与,19,世纪以前欧洲一些地区人口统计数据吻合,适用于,19,世纪后迁往加拿大的欧洲移民后代,可用于短期人口增长预测,不符合,19,世纪

4、后多数地区人口增长规律,不能预测较长期的人口增长过程,19,世纪后人口数据,人口增长率,r,不是常数,(,逐渐下降,),阻滞增长模型,(,Logistic,模型,),人口增长到一定数量后,增长率下降的原因:,资源、环境等因素对人口增长的阻滞作用,且阻滞作用随人口数量增加而变大,假设,r,固有增长率,(,x,很小时,),x,m,人口容量(资源、环境能容纳的最大数量),r,是,x,的减函数,dx,/,dt,x,0,x,m,x,m,/2,x,m,t,x,0,x,(,t,)S,形曲线,x,增加先快后慢,x,0,x,m,/2,阻滞增长模型,(,Logistic,模型,),阻滞增长模型参数估计,(,r,x

5、m,),r,=0.2557/10,年,x,m,=392.0886,美国,1790,年至,1990,年数据,线性最小二乘法,参数估计,用指数增长模型或阻滞增长模型作人口,预报,必须先估计模型参数,r,或,r,x,m,利用统计数据用最小二乘法作拟合,例:美国人口数据(单位,百万),1860 1870 1880 1960 1970 1980 1990,31.4 38.6 50.2 179.3 204.0 226.5 251.4,专家估计,阻滞增长模型,(,Logistic,模型,),r,=0.2557,x,m,=392.1,模型检验,用模型计算,2000,年美国人口,与实际数据比较,实际为,281

6、4(,百万,),模型应用,预报美国,2010,年的人口,加入,2000,年人口数据后重新估计模型参数,Logistic,模型在经济领域中的应用,(,如耐用消费品的售量,),阻滞增长模型,(,Logistic,模型,),r,=0.2490,x,m,=434.0,x,(2010)=306.0,案例二 传染病模型,问题,描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮到来的时刻,预防传染病蔓延的手段,按照传播过程的一般规律,用机理分析方法建立模型,已感染人数,(,病人,),i,(,t,),每个病人每天有效接触,(,足以使人致病,),人数为,模型,1,假设,若有效接触的是病人,则不能使

7、病人数增加,必须区分已感染者,(,病人,),和未感染者,(,健康人,),建模,?,模型,2,区分已感染者,(,病人,),和未感染者,(,健康人,),假设,1,)总人数,N,不变,病人和健康 人的 比例分别为,2,)每个病人每天有效接触人数为,且,使接触的健康人致病,建模,日,接触率,SI,模型,模型,2,1/2,t,m,i,i,0,1,0,t,t,m,传染病高潮到来时刻,(,日接触率,),t,m,Logistic,模型,病人可以治愈!,?,t=t,m,di,/,dt,最大,模型,3,传染病无免疫性,病人治愈成为健康人,健康人可再次被感染,增加假设,SIS,模型,3,)病人每天治愈的比例为,日,

8、治愈率,建模,日接触率,1/,感染期,一个感染期内,每个病人的有效接触人数,称为,接触数,。,模型,3,i,0,i,0,接触数,=1,阈值,感染期内,有效接触感染的健康者人数不超过病人数,1-1/,i,0,模型,2(SI,模型,),如何看作模型,3(SIS,模型,),的特例,i,di,/,dt,0,1,1,0,t,i,1,1-1/,i,0,t,1,di,/,dt,1/,i,(,t,),先升后降至0,P,2,:,s,0,1/,i,(,t,),单调降至0,1/,阈值,P,3,P,4,P,2,S,0,模型,4,SIR,模型,预防传染病蔓延的手段,(,日接触率,),卫生水平,(,日,治愈率,),医疗水平,传染病不蔓延的条件,s,0,1/,的估计,降低,s,0,提高,r,0,提高阈值,1/,降低,(=,/,),群体免疫,模型,4,SIR,模型,被传染人数的估计,记被传染人数比例,x,s,0,i,0,P,1,i,0,0,s,0,1,小,s,0,1,提高阈值,1/,降低,被传染人数比例,x,s,0,-,1/,=,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服