ImageVerifierCode 换一换
格式:PPT , 页数:133 ,大小:1.49MB ,
资源ID:13164173      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/13164173.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(直升机空气动力学介绍(英文版).ppt)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

直升机空气动力学介绍(英文版).ppt

1、Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,L.Sankar Helicopter Aerodynamics,*,Helicopter Aerodynamics and Performance,Preliminary Remarks,1,L.Sankar Helicopter Aerodynamics,The problems are many.,2,L.Sankar Helicopter Aerodyn

2、amics,A systematic Approach is necessary,A variety of tools are needed to understand,and predict these phenomena.,Tools needed include,Simple back-of-the envelop tools for sizing helicopters,selecting engines,laying out configuration,and predicting performance,Spreadsheets and MATLAB scripts for map

3、ping out the blade loads over the entire rotor disk,High end CFD tools for modeling,Airfoil and rotor aerodynamics and design,Rotor-airframe interactions,Aeroacoustic analyses,Elastic and multi-body dynamics modeling tools,Trim analyses,Flight Simulation software,In this work,we will cover most of t

4、he tools that we need,except for elastic analyses,multi-body dynamics analyses,and flight simulation software.,We will cover both the basics,and the applications.,We will assume familiarity with classical low speed and high speed aerodynamics,but nothing more.,3,L.Sankar Helicopter Aerodynamics,Plan

5、 for the Course,PowerPoint presentations,interspersed with numerical calculations and spreadsheet applications.,Part 1:Hover Prediction Methods,Part 2:Forward Flight Prediction Methods,Part 3:Helicopter Performance Prediction Methods,Part 4:Introduction to Comprehensive Codes and CFD tools,Part 5:Co

6、mpletion of CFD tools,Discussion of Advanced Concepts,4,L.Sankar Helicopter Aerodynamics,Text Books,Wayne Johnson:Helicopter Theory,Dover Publications,ISBN-0-486-68230-7,References:,Gordon Leishman:Principles of Helicopter Aerodynamics,Cambridge Aerospace Series,ISBN 0-521-66060-2,Prouty:Helicopter

7、Performance,Stability,and Control,Prindle,Weber&Schmidt,ISBN 0-534-06360-8,Gessow and Myers,Stepniewski&Keys,5,L.Sankar Helicopter Aerodynamics,Grading,5 Homework Assignments(each worth 5%).,Two quizzes(each worth 25%),One final examination(worth 25%),All quizzes and exams will be take-home type.The

8、y will require use of an Excel spreadsheet program,or optionally short computer programs you will write.,All the material may be submitted electronically.,6,L.Sankar Helicopter Aerodynamics,Instructor Info.,Lakshmi,N.,Sankar,School of Aerospace Engineering,Georgia Tech,Atlanta,GA 30332-0150,USA.,Web

9、 site:,www.ae.gatech.edu/lsankar/AE6070.Fall2002,E-mail Address:,lsankarae.gatech.edu,7,L.Sankar Helicopter Aerodynamics,Earliest Helicopter.Chinese Top,8,L.Sankar Helicopter Aerodynamics,Leonardo da Vinci(1480?1493?),9,L.Sankar Helicopter Aerodynamics,Human Powered Flight?,10,L.Sankar Helicopter Ae

10、rodynamics,DAmeCourt(1863)Steam-Propelled Helicopter,11,L.Sankar Helicopter Aerodynamics,Paul Cornu(1907)First man to fly in helicopter mode.,12,L.Sankar Helicopter Aerodynamics,De La Ciervainvented Autogyros(1923),13,L.Sankar Helicopter Aerodynamics,Cierva introduced hinges at the rootthat allowed

11、blades to freely flap,Hinges,Only the lifts were transferred to the fuselage,not unwanted moments.,In later models,lead-lag hinges were also used to,Alleviate root stresses from Coriolis forces,14,L.Sankar Helicopter Aerodynamics,Igor Sikorsky Started work in 1907,Patent in 1935,Used tail rotor to c

12、ounter-act the reactive torque exerted by,the rotor on the vehicle.,15,L.Sankar Helicopter Aerodynamics,Sikorskys R-4,16,L.Sankar Helicopter Aerodynamics,Ways of countering the Reactive Torque,Other possibilities:Tip jets,tip mounted engines,17,L.Sankar Helicopter Aerodynamics,Single Rotor Helicopte

13、r,18,L.Sankar Helicopter Aerodynamics,Tandem Rotors(Chinook),19,L.Sankar Helicopter Aerodynamics,Coaxial rotorsKamov KA-52,20,L.Sankar Helicopter Aerodynamics,NOTAR Helicopter,21,L.Sankar Helicopter Aerodynamics,NOTAR Concept,22,L.Sankar Helicopter Aerodynamics,Tilt Rotor Vehicles,23,L.Sankar Helico

14、pter Aerodynamics,Helicopters tend to grow in size.,AH-64A,AH-64D,Length,58.17 ft(17.73 m),58.17 ft(17.73 m),Height,15.24 ft(4.64 m),13.30 ft(4.05 m),Wing Span,17.15 ft(5.227 m),17.15 ft(5.227 m),Primary Mission Gross Weight,15,075 lb(6838 kg)11,800 pounds Empty,16,027 lb(7270 kg)Lot 1 Weight,24,L.S

15、ankar Helicopter Aerodynamics,AH-64A,AH-64D,Length,58.17 ft(17.73 m),58.17 ft(17.73 m),Height,15.24 ft(4.64 m),13.30 ft(4.05 m),Wing Span,17.15 ft(5.227 m),17.15 ft(5.227 m),Primary Mission Gross Weight,15,075 lb(6838 kg)11,800 pounds Empty,16,027 lb(7270 kg)Lot 1 Weight,Hover In-Ground Effect(MRP),

16、15,895 ft(4845 m)Standard Day14,845 ft(4525 m)Hot Day ISA+15C,14,650 ft(4465 m)Standard Day13,350 ft(4068 m)Hot Day ISA+15 C,Hover Out-of-Ground Effect(MRP),12,685 ft(3866 m)Sea Level Standard Day11,215 ft(3418 m)Hot Day 2000 ft 70 F(21 C),10,520 ft(3206 m)Standard Day9,050 ft(2759 m)Hot Day ISA+15

17、C,Vertical Rate of Climb(MRP),2,175 fpm(663 mpm)Sea Level Standard Day2,050 fpm(625 mpm)Hot Day 2000 ft 70 F(21 C),1,775 fpm(541 mpm)Sea Level Standard Day1,595 fpm(486 mpm)Hot Day 2000 ft 70 F(21 C),Maximum Rate of Climb(IRP),2,915 fpm(889 mpm)Sea Level Standard Day2,890 fpm(881 mpm)Hot Day 2000 ft

18、 70 F(21 C),2,635 fpm(803 mpm)Sea Level Standard Day2,600 fpm(793 mpm)Hot Day 2000 ft 70 F(21 C),Maximum Level Flight Speed,150 kt(279 kph)Sea Level Standard Day153 kt(284 kph)Hot Day 2000 ft 70 F(21 C),147 kt(273 kph)Sea Level Standard Day149 kt(276 kph)Hot Day 2000 ft 70 F(21 C),Cruise Speed(MCP),

19、150 kt(279 kph)Sea Level Standard Day153 kt(284 kph)Hot Day 2000 ft 70 F(21 C),147 kt(273 kph)Sea Level Standard Day149 kt(276 kph)Hot Day 2000 ft 70 F(21 C),25,L.Sankar Helicopter Aerodynamics,Power Plant Limitations,Helicopters use turbo shaft engines.,Power available is the principal factor.,An a

20、dequate power plant is important for carrying out the missions.,We will look at ways of estimating power requirements for a variety of operating conditions.,26,L.Sankar Helicopter Aerodynamics,High Speed Forward Flight Limitations,As the forward speed increases,advancing side experiences shock effec

21、ts,retreating side stalls.This limits thrust available.,Vibrations go up,because of the increased dynamic pressure,and increased harmonic content.,Shock Noise goes up.,Fuselage drag increases,and parasite power consumption goes up as V,3,.,We need to understand and accurately predict the air loads i

22、n high speed forward flight.,27,L.Sankar Helicopter Aerodynamics,Concluding Remarks,Helicopter aerodynamics is an interesting area.,There are a lot of problems,but there are also opportunities for innovation.,This course is intended to be a starting point for engineers and researchers to explore eff

23、icient(low power),safer,comfortable(low vibration),environmentally friendly(low noise)helicopters.,28,L.Sankar Helicopter Aerodynamics,Hover Performance Prediction Methods,I.Momentum Theory,29,L.Sankar Helicopter Aerodynamics,Background,Developed for marine propellers by Rankine(1865),Froude(1885).,

24、Extended to include swirl in the slipstream by Betz(1920),This theory can predict performance in hover,and climb.,We will look at the general case of climb,and extract hover as a special situation with zero climb velocity.,30,L.Sankar Helicopter Aerodynamics,Assumptions,Momentum theory concerns itse

25、lf with the global balance of mass,momentum,and energy.,It does not concern itself with details of the flow around the blades.,It gives a good representation of what is happening far away from the rotor.,This theory makes a number of simplifying assumptions.,31,L.Sankar Helicopter Aerodynamics,Assum

26、ptions(Continued),Rotor is modeled as an actuator disk which adds momentum and energy to the flow.,Flow is incompressible.,Flow is steady,inviscid,irrotational.,Flow is one-dimensional,and uniform through the rotor disk,and in the far wake.,There is no swirl in the wake.,32,L.Sankar Helicopter Aerod

27、ynamics,Control Volume is a Cylinder,V,Disk area A,Total area S,Station1,2,3,4,V+v,2,V+v,3,V+v,4,33,L.Sankar Helicopter Aerodynamics,Conservation of Mass,34,L.Sankar Helicopter Aerodynamics,Conservation of Mass through the Rotor Disk,Flow through the rotor disk=,Thus v,2,=v,3,=v,There is no velocity

28、 jump across the rotor disk,The quantity v is called induced velocity at the rotor disk,35,L.Sankar Helicopter Aerodynamics,Global Conservation of Momentum,Mass flow rate through the rotor disk times,Excess velocity between stations 1 and 4,36,L.Sankar Helicopter Aerodynamics,Conservation of Momentu

29、m at the Rotor Disk,V+v,V+v,p,2,p,3,Due to conservation of mass across the,Rotor disk,there is no velocity jump.,Momentum inflow rate=Momentum outflow rate,Thus,Thrust T=A(p,3,-p,2,),37,L.Sankar Helicopter Aerodynamics,Conservation of Energy,Consider a particle that traverses from,Station 1 to stati

30、on 4,We can apply Bernoulli equation between,Stations 1 and 2,and between stations 3 and 4.,Recall assumptions that the flow is steady,irrotational,inviscid.,1,2,3,4,V+v,V+v,4,38,L.Sankar Helicopter Aerodynamics,From an earlier slide#36,Thrust equals mass flow rate,through the rotor disk times exces

31、s velocity,between stations 1 and 4,Thus,v=v,4,/2,39,L.Sankar Helicopter Aerodynamics,Induced Velocities,V,V+v,V+2v,The excess velocity in the,Far wake is twice the induced,Velocity at the rotor disk.,To accommodate this excess,Velocity,the stream tube,has to contract.,40,L.Sankar Helicopter Aerodyn

32、amics,Induced Velocity at the Rotor Disk,Now we can compute the induced velocity at the,rotor disk in terms of thrust T.,T=Mass flow rate through the rotor disk*(Excess velocity between 1 and 4).,T=2,r,A(V+v)v,There are two solutions.The sign,Corresponds to a wind turbine,where energy,Is removed fro

33、m the flow.v is negative.,The+sign corresponds to a rotor or,Propeller where energy is added to the flow.,In this case,v is positive.,41,L.Sankar Helicopter Aerodynamics,Induced velocity at the rotor disk,42,L.Sankar Helicopter Aerodynamics,Ideal Power Consumed by the Rotor,In hover,ideal power,43,L

34、Sankar Helicopter Aerodynamics,Summary,According to momentum theory,the downwash in the far wake is twice the induced velocity at the rotor disk.,Momentum theory gives an expression for induced velocity at the rotor disk.,It also gives an expression for ideal power consumed by a rotor of specified

35、dimensions.,Actual power will be higher,because momentum theory neglected many sources of losses-viscous effects,compressibility(shocks),tip losses,swirl,non-uniform flows,etc.,44,L.Sankar Helicopter Aerodynamics,Figure of Merit,Figure of merit is defined as the ratio of ideal power for a rotor in,h

36、over,obtained from momentum theory and the actual power consumed by the rotor.,For most rotors,it is between 0.7 and 0.8.,45,L.Sankar Helicopter Aerodynamics,Some Observations on Figure of Merit,Because a helicopter spends considerable portions of time in hover,designers attempt to optimize the roto

37、r for hover(FM0.8).,We will discuss how to do this later.,A rotor with a lower figure of merit(FM0.6)is not necessarily a bad rotor.,It has simply been optimized for other conditions(e.g.high speed forward flight).,46,L.Sankar Helicopter Aerodynamics,Example#1,A tilt-rotor aircraft has a gross weigh

38、t of 60,500 lb.(27500 kg).,The rotor diameter is 38 feet(11.58 m).,Assume FM=0.75,Transmission losses=5%,Compute power needed to hover at sea level on a hot day.,47,L.Sankar Helicopter Aerodynamics,Example#1(Continued),48,L.Sankar Helicopter Aerodynamics,Alternate scenarios,What happens on a hot day

39、and/or high altitude?,Induced velocity is higher.,Power consumption is higher,What happens if the rotor disk area A is smaller?,Induced velocity and power are higher.,There are practical limits to how large A can be.,49,L.Sankar Helicopter Aerodynamics,Disk Loading,The ratio T/A is called disk load

40、ing.,The higher the disk loading,the higher the induced velocity,and the higher the power.,For helicopters,disk loading is between 5 and 10 lb/ft,2,(24 to 48 kg/m,2,).,Tilt-rotor vehicles tend to have a disk loading of 20 to 40 lbf/ft,2,.They are less efficient in hover.,VTOL aircraft have very smal

41、l fans,and have very high disk loading(500 lb/ft,2,).,50,L.Sankar Helicopter Aerodynamics,Power Loading,The ratio of thrust to power T/P is called the Power Loading.,Pure helicopters have a power loading between 6 to 10 lb/HP.,Tilt-rotors have lower power loading 2 to 6 lb/HP.,VTOL vehicles have the

42、 lowest power loading less than 2 lb/HP.,51,L.Sankar Helicopter Aerodynamics,Non-Dimensional Forms,52,L.Sankar Helicopter Aerodynamics,Non-dimensional forms.,53,L.Sankar Helicopter Aerodynamics,Tip Losses,R,A portion of the rotor near the,Tip does not produce much lift,Due to leakage of air from,The

43、 bottom of the disk to the top.,One can crudely account for it by,Using a smaller,modified radius,BR,where,BR,B=Number of blades.,54,L.Sankar Helicopter Aerodynamics,Power Consumption in HoverIncluding Tip Losses.,55,L.Sankar Helicopter Aerodynamics,Hover PerformancePrediction Methods,II.Blade Eleme

44、nt Theory,56,L.Sankar Helicopter Aerodynamics,Preliminary Remarks,Momentum theory gives rapid,back-of-the-envelope estimates of Power.,This approach is sufficient to size a rotor(i.e.select the disk area)for a given power plant(engine),and a given gross weight.,This approach is not,adequate,for desi

45、gning the rotor.,57,L.Sankar Helicopter Aerodynamics,Drawbacks of Momentum Theory,It does not take into account,Number of blades,Airfoil characteristics(lift,drag,angle of zero lift),Blade planform(taper,sweep,root cut-out),Blade twist distribution,Compressibility effects,58,L.Sankar Helicopter Aero

46、dynamics,Blade Element Theory,Blade Element Theory rectifies many of these drawbacks.First proposed by Drzwiecki in 1892.,It is a“strip”theory.The blade is divided into a number of strips,of width,D,r.,The lift generated by that strip,and the power consumed by that strip,are computed using 2-D airfo

47、il aerodynamics.,The contributions from all the strips from all the blades are summed up to get total thrust,and total power.,59,L.Sankar Helicopter Aerodynamics,Typical Blade Section(Strip),R,dr,r,dT,Root Cut-out,60,L.Sankar Helicopter Aerodynamics,Typical Airfoil Section,W,r,V+v,Line of Zero Lift,

48、q,f,a,effective,=,q-f,61,L.Sankar Helicopter Aerodynamics,Sectional Forces,Once the effective angle of attack is known,we can look-up,the lift and drag coefficients for the airfoil section at that strip.,We can subsequently compute sectional lift and drag forces,per foot(or meter)of span.,These forc

49、es will be normal to and along,the total velocity vector.,U,T,=,w,r,U,P,=,V+v,62,L.Sankar Helicopter Aerodynamics,Rotation of Forces,W,r,V+v,D,L,D,D,D,T,D,F,x,63,L.Sankar Helicopter Aerodynamics,Approximate Expressions,The integration(or summation of forces)can only be done numerically.,A spreadshee

50、t may be designed.A sample spreadsheet is being provided as part of the course notes.,In some simple cases,analytical expressions may be obtained.,64,L.Sankar Helicopter Aerodynamics,Closed Form Integrations,The chord c is constant.Simple linear twist.,The inflow velocity v and climb velocity V are

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服