1、课前探究学习,课堂讲练互动,第,2,课时 等差数列的性质及其应用,1.,已知等差数列,a,n,中,,a,2,a,6,a,10,1,,,求,a,4,a,8,.,2.,若,a,3,5,,则,a,1,2,a,4,_,若,m,n,p,q,则,a,m,+a,n,a,p,a,q,若,m,n,2,p,则,a,m,+a,n,2,a,p,已知等差数列,a,n,的公差是正数,并且,a,3,a,7,12,,,a,4,a,6,4,,求数列,a,n,的通项公式,3.设,a,n,是公差为正数的等差数列,若,a,1,a,2,a,3,15,,,a,1,a,2,a,3,80,,求,a,11,a,12,a,13,解:,a,n,
2、是公差为正数的等差数列,设公差为,d,,,a,1,a,2,a,3,3,a,2,15,,,a,2,5,又,a,1,a,2,a,3,80,,,a,1,a,3,(5,d,)(5,d,),25-d,2,=,16,d,3,或,d,3(,舍去,),a,12,a,2,10,d,35,,,a,11,a,12,a,13,3,a,12,105.,4.,若,a,15,8,,,a,60,20,,则,a,75,_.,a,n,a,m,(n-m)d,(,m,,,n,N,*,),等差数列的性质,(1),等差数列的项的对称性,a,1,a,n,(2),若,a,n,、,b,n,分别是公差为,d,,,d,的等差数列,则有,(3),a
3、n,的公差为,d,,则,d,0,a,n,为,递,_,数列;,d,0,a,n,为递,_,数列;,d,0,a,n,为,_,数列,2,数列,结论,c,a,n,c,a,n,pa,n,qb,n,a,2,a,n,1,a,3,a,n,2,等差数列的,“,子数列,”,的性质,若数列,a,n,是公差为,d,的等差数列,则,(1),a,n,去掉前几项后余下的项仍组成公差为,_,的等差数列;,(2),奇数项数列,a,2,n,1,是公差为,_,的等差数列;,偶数项数列,a,2,n,是公差为,_,的等差数列;,(3),从等差数列,a,n,中等距离抽取项,所得的数列仍为等差数列,当然公差也随之发生变化,2,5.,三个数
4、成等差数列,和为,6,,积为,24,,求这三个数;,6.四个数成递增等差数列,中间两数的和为,2,,首末两项的积为,8,,求这四个数,(1),三个数成等差数列,可设这三个数为,a,d,,,a,,,a,d,(,d,为公差,),;,(2),四个数成等差数列,且中间两数的和已知,可设为,a,3,d,,,a,d,,,a,d,,,a,3,d,(,公差为,2,d,),已知成等差数列的四个数之和为,26,,第二个数与第三个数之积为,40,,求这个等差数列,解,设此四数依次为,a,3,d,,,a,d,,,a,d,,,a,3,d,.,【,变式,】,由递推关系式构造等差数列求通项,(1),求证:数列,b,n,为等
5、差数列,(2),试问,a,1,a,2,是否是数列,a,n,中的项?如果是,是第几项;如果不是,请说明理由,即,a,1,a,2,a,11,,,a,1,a,2,是数列,a,n,中的项,是第,11,项,(1),求证:数列,a,n,2,n,为等差数列;,(2),设数列,b,n,满足,b,n,2log,2,(,a,n,1,n,),,求,b,n,的通项公式,解,(1)(,a,n,1,2,n,1,),(,a,n,2,n,),a,n,1,a,n,2,n,1(,与,n,无关,),,,故数列,a,n,2,n,为等差数列,且公差,d,1.,(2),由,(1),可知,,a,n,2,n,(,a,1,2),(,n,1),
6、d,n,1,,,故,a,n,2,n,n,1,,所以,b,n,2log,2,(,a,n,1,n,),2,n,.,【,变式,】,在数列,a,n,中,,a,1,2,,,a,n,1,a,n,2,n,1.,某公司经销一种数码产品,第,1,年获利,200,万元,从第,2,年起由于市场竞争等方面的原因,利润每年比上一年减少,20,万元,按照这一规律如果公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损?,解,由题意可知,设第,1,年获利为,a,1,,第,n,年获利为,a,n,,则,a,n,a,n,1,20,,,(,n,2,,,n,N,*,),,每年获利构成等差数列,a,n,,且首项,a,1,200,,公差,d,20,,,所以,a,n,a,1,(,n,1),d,200,(,n,1)(,20),20,n,220.,若,a,n,0,,则该公司经销这一产品将亏损,,由,a,n,20,n,22011,,,即从第,12,年起,该公司经销这一产品将亏损,【,变式,】,