ImageVerifierCode 换一换
格式:PPTX , 页数:30 ,大小:7.37MB ,
资源ID:13118694      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/13118694.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(5.3-诱导公式.pptx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

5.3-诱导公式.pptx

1、第五章 三角函数,5.3,诱导公式(第一课时),设,是一个任意角,,R,,它的终边与单位圆相交于点,P,(,x,,,y,),(1),把点,P,的纵坐标,y,叫做,的,正弦函数,,,记作,sin,,即,y,=sin,;,(2),把点,P,的横坐标,x,叫做,的,余弦函数,,,记作,cos,,即,x,=cos,;,(3),把点,P,的纵坐标和横坐标的比值 叫做,的,记作,即,(,x,0).,终边相同的角的对应三角函数相同:,cos(+,2,k,),=cos,tan(+,2,k,),=tan,sin(+,2,k,),=sin,其中,k,Z,三角函数的概念,前面我们利用圆的几何性质(三角函数的定义)

2、得到了同角,三角函数之间的基本关系,我们知道,圆的最重要的性质是对称性,而对称性(奇偶性)也是函数的重要性质,由此想到,可以利用圆的对称性,研究三角函数的对称性,如图,在直角坐标系内,设任意角,的,终边与单位圆交于点,P,1,,,(,1,)作,P,1,关于原点的对称点,P,2,,以,OP,2,为,终边的角与角,有什么关系?角,,的三,角函数值之间有什么关系?,(,2,)如果作,P,1,关于,x,轴(或,y,轴)的对称点,P,3,(或,P,4,),那么又可以得到什么结论?,探究,P,2,P,1,P,4,P,3,+,P,2,P,1,如图,以,OP,2,为终边的角,都是与角,终边相同的角,即,=2

3、k,(,)(,k,Z),因此只需要研究角,和角,的三角函数关系即可,设,P,1,(,x,1,,,y,1,),,,P,2,(,x,2,,,y,2,),因为,P,1,是,P,2,关于原点的对称点,所以,x,1,=,x,2,,,y,1,=,y,2,根据三角函数的定义,得,公式二,sin,(+,),=,-,sin,cos(+,),=,-,cos,tan(+,),=,tan,从而得,-,P,1,P,3,根据三角函数的定义,得,公式三,sin,(,-,),=,-,sin,cos(,-,),=,cos,tan(,-,),=,-,tan,从而得,根据三角函数的定义,得,公式四,sin,(,-,),=,sin

4、cos(,-,),=,-,cos,tan(,-,),=,-,tan,从而得,-,P,1,P,4,对于公式一,四的概括:,【1】,+2k,,,-,,,(),的三角函数值(终边关于原点、,x,轴、,y,轴对称的角),在绝对值上等于,的同名函数值,正负取决于把,看成锐角时原函数值的符号,.,即“,函数名不变,符号看象限,.,”,【2】,对于正弦与余弦的诱导公式,,可以为任意角;对于正切的诱导公式,,的终边不能落在,y,轴上,;,【3】,诱导公式即可以用弧度制表示,也可以用角度制表示,.,【例,1,】利用公式求下列三角函数,值:,练习,1,:,利用诱导公式化简的一般思路:,切化弦,负化正、大化小;异

5、名化同名,异角化同角,.,练习,2,:,诱导公式,锐角的,三角函数,0,2,的角,的三角函数,任意正角的,三角函数,任意负角的,三角函数,【,利用诱导公式一,四把任意角的三角函数转化成锐角的三角函数的步骤,】,用公式一或公式三,用公式二或公式四,用公式一,公式四,:,sin(,-,),=,sin;,cos(,-,),=,-,cos;,tan(,-,),=,-,tan.,公式三,:,sin(,-,),=,-,sin;,cos(,-,),=,cos;,tan(,-,),=,-,tan.,公式二,:,sin(+,),=,-,sin;,cos(+,),=,-,cos;,tan(+,),=,tan.,公

6、式一,:,sin(2,k,+,),=,sin;,cos(2,k,+,),=,cos;,tan(2,k,+,),=,tan.,作,P,1,关于直线,y,=,x,的对称点,P,5,,以,O,P,5,为终边的角,与角,有什么关系?角,与角,的三角函数值之间有什么关系?,探究,根据三角函数的定义,得:,以,O,P,5,为终边的角,都是与角 终边相同的角,即 ,,P,1,P,5,公式五,以,OP,6,为终边的角为 ,,根据三角函数的定义,得:,从而得,公式六,作,P,5,关于,y,轴的对称点,P,6,,又能得到什么结论?,探究,可得,公式五,公式四,公式五,公式二,尝试由,公式二,,,公式五,,证明以下

7、结论,.,公式六,公式二,尝试由,公式二,,,公式六,证明以下结论,.,对于公式一,六都叫做诱导公式,.,【4】,这些规律对任何三角函数,(,只要存在,有意义,),都成立,【1】,诱导公式都是,的三角函数与 的三角函数之间的转化,记忆口诀是:,奇变偶不变,符号看象限,【2】,“奇变偶不变”,:,角,前面的是 ,如果,k,是奇数,那么得到的三角函数名要发生变化,即,正弦变余弦,余弦变正弦;如果,k,是偶数,那么得到的三角函数名不变化,【3】,“符号看象限”,:,将角,看成一个锐角,(,为了判断符号,实际,可以不是锐角,),,此时判断,所在的象限,并观察原三角函数对这个角运算得到的符号是正还是负

8、4】,这些规律对任何三角函数,(,只要存在,有意义,),都成立,【1】,诱导公式都是,的三角函数与 的三角函数之间的转化,记忆口诀是:,奇变偶不变,符号看象限,【2】,“奇变偶不变”,:角,前面的是 ,如果 是 的奇数倍,那么得到的,三角函数名要发生变化,即正弦变余弦,余弦变正弦;如果 是 的偶数倍,,那么得到的三角函数名不变化,【3】,“符号看象限”,:将角,看成一个锐角,(,为了判断符号,实际,可以不是锐角,),,,此时判断 所在的象限,并观察原三角函数对这个角运算得到的符号,是正还是负,.,sin,4,cos,4,cos,4,sin,4,(sin,2,cos,2,),2,2sin,2,cos,2,0,练习,4.,如,图,在平面直角坐标系,xOy,中,单位圆的圆心的初始位置在,(0,,,1),,此时圆上一点,P,的位置在,(0,,,0),,圆在,x,轴上沿正向滚动,.,当圆滚动到圆心位于,C,(2,,,1),时,点,P,的坐标为,_,_,_.,(,2,-,sin,2,,,1,-,cos,2),解析,如图,过圆心,C,作,x,轴的垂线,垂足为,A,,过,P,作,x,轴的垂线与过,C,作,y,轴的垂线交于点,B,.,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服