ImageVerifierCode 换一换
格式:PPT , 页数:27 ,大小:361KB ,
资源ID:13090028      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/13090028.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(三维旋转矩阵(大学).ppt)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

三维旋转矩阵(大学).ppt

1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第,7,章 三维变换,7.1,简介,7.2,三维几何变换,7.3,三维坐标变换,7.1,简介,三维平移变换、比例变换可看成是二维情况的直接推广。但旋转变换则不然,因为我们可选取空间任意方向作旋转轴,因此三维变换处理起来更为复杂。,与二维变换相似,我们也采用齐次坐标技术来描述空间的各点坐标及其变换,这时,描述空间三维变换的变换矩阵是,4,4,的形式。,由此,一系列变换可以用单个矩阵来表示。,7.2,三维几何变换,7.2.1,基本三维几何变换,1.,平移变换,若空间平移量为,(t,x,t,y,t,z,),,则平

2、移变换为,P,(,x,y,z,),P,(,x,y,z,),x,y,z,补充说明:点的平移、物体的平移、多面体的平移、逆变换,2.,比例变换,(,1,)相对坐标原点的比例变换,一个点,P=(,x,y,z,),相对于坐标原点的比例变换的矩阵可表示为,x,y,z,其中,为正值。,(,2,)相对于所选定的固定点的比例变换,z,x,y,(,x,f,y,f,z,f,),z,x,y,(,x,f,y,f,z,f,),z,x,y,(,x,f,y,f,z,f,),z,x,y,(,x,f,y,f,z,f,),(1),(2),(3),3.,绕坐标轴的旋转变换,三维空间中的旋转变换比二维空间中的旋转变换复杂。除了需要指

3、定旋转角外,还需指定旋转轴。,若以坐标系的三个坐标轴,x,y,z,分别作为旋转轴,则点实际上只在垂直坐标轴的平面上作二维旋转。此时用二维旋转公式就可以直接推出三维旋转变换矩阵。,规定在右手坐标系中,物体旋转的正方向是右手螺旋方向,即从该轴正半轴向原点看是逆时针方向。,(,1,)绕,z,轴旋转,x,x,x,y,y,y,z,z,z,(,2,)绕,x,轴旋转,(,3,)绕,y,轴旋转,绕,z,轴旋转,绕,x,轴旋转,绕,y,轴旋转,旋转,则该轴坐标的一列元素不变。按照二维图形变换的情况,将其旋转矩阵,中的元素添入相应的位置中,即,对于单位矩阵,旋转变换矩阵规律,:,,,绕哪个坐标轴,(1),绕,z,

4、轴正向旋转,角,旋转后点的,z,坐标值不变,x,、,y,坐标的变化相当于在,xoy,平面内作正,角旋转。,(2),绕,x,轴正向旋转,角,,旋转后点的,x,坐标值不变,,Y,、,z,坐标的变化相当于在,yoz,平面内作正,角旋转。,即,这就是说,绕,y,轴的旋转变换的矩阵与绕,x,轴和,z,轴变换的矩阵从表面上看在符号上有所不同。,(3),绕,y,轴正向旋转,角,,y,坐标值不变,,z,、,x,的坐标相当,于在,zox,平面内作正,角旋转,于是,7.2.2,组合变换,物体绕平行于某一坐标轴的旋转变换。基本步骤,:,(1),平移物体使旋转轴与所平行的坐标轴重合,;,(2),沿着该坐标轴进行指定角

5、度的旋转,;,(3),平移物体使旋转轴移回到原位置。,x,y,z,x,y,z,(a),(b),y,x,z,(c),x,z,(d),绕任意轴旋转的变换,(1),平移物体使旋转轴通过坐标原点,;,x,y,z,P,1,P,2,x,y,z,P,1,P,2,(1),(2),旋转物体使旋转轴与某个坐标轴,(,如,z,轴,),重合,;,(3),关于该坐标轴进行指定角度的旋转,;,x,y,z,P,1,P,2,(2),y,x,z,P,1,P,2,(3),(4),应用逆旋转变换将旋转轴回到原方向,;,(5),应用逆平移变换将旋转轴变换到原位置。,x,y,z,P,1,P,2,(4),x,y,z,P,1,P,2,(5

6、),例,.,求变换,A,V,,使过原点的向量,V=(a,b,c),与,z,轴的正向一致。,x,y,z,V,x,y,z,实现步骤,:,(1),将,V,绕,x,轴旋转到,xz,平面上,;,(2),再绕,y,轴旋转使之与,z,轴正向重合。,旋转角度的确定:绕,x,轴旋转的角度 等于向量,V,在,yz,平面上的投影向量与,z,轴正向的夹角。,x,y,z,V=(a,b,c),V,1,=(0,b,c),V,V,根据矢量的点乘与叉乘,可以算出,:,因此,,类似地,可以求出,:,利用这一结果,则绕任意轴旋转的变换矩阵可表示为:,x,y,z,P,1,P,2,x,y,z,P,1,P,2,1),T,x,y,z,P,

7、1,P,2,2),x,z,P,1,P,2,3),给定具有单位长的旋转轴,A=a,x,a,y,a,z,和旋转角 ,,则物体绕,OA,轴旋转变换的矩阵表示可确定如下:,A,轴角旋转,7.2.3,绕任意轴旋转变换的简单算法,x,y,z,o,其中,表示,M,的转置矩阵。,利用这一结果,则绕任意轴旋转的变换矩阵可表示为:,传统的方法通过绕坐标轴旋转变换的乘积表示绕任意轴旋转的变换。与之相比,这种方法更直观。,x,y,z,P,1,P,2,x,y,z,P,1,P,2,其中旋转轴,A=a,x,a,y,a,z,为,A,7.2.4,三维变换矩阵的功能分块,(,1,)三维线性变换部分,(,2,)三维平移变换部分,(

8、3,)透视变换部分,(,4,)整体比例因子,7.3,三维坐标变换,几何变换:在一个参考坐标系下将物体从一个位置移动到另一个位置的变换。,坐标变换:一个物体在不同坐标系之间的坐标变换。如从世界坐标系到观察坐标系的变换;观察坐标到设备坐标之间的变换。再如,对物体造型时,我们通常在局部坐标系中构造物体,然后重新定位到用户坐标系。,坐标变换的构造方法,:,与二维的情况相同,为将物体的坐标描述从一个系统转换为另一个系统,我们需要构造一个变换矩阵,它能使两个坐标系统重叠。具体过程分为两步:,(,1,)平移坐标系统,oxyz,,使它的坐标原点与新坐标系统的原点重合;,(,2,)进行一些旋转变换,使两坐标系

9、的坐标轴重叠。,有多种计算坐标变换的方法,下面我们介绍一种简单的方法。,x,y,z,(0,0,0),x,z,y,设新坐标系,oxyz,原点的坐标为(,x,0,y,0,z,0,),相对原坐标系其单位坐标矢量为:,将原坐标系,xyz,下的坐标,转换成新坐标系,xyz,的坐标可由以下两步完成:,首先,平移坐标系,xyz,,使其原点与新坐标系,xyz,的原点(,x,0,y,0,z,0,)重合;,x,y,z,(0,0,0),x,z,y,x,y,z,(0,0,0),平移矩阵为:,(,x,y,z,),第二步,利用单位坐标向量构造坐标旋转矩阵,该矩阵,R,将单位向量,分别变换到,x,y,和,z,轴。,综合以上两步,从,oxyz,到,oxyz,的坐标变换的矩阵为,说明:变换矩阵,TR,将一个直角坐标系变换为另一个坐标系。即使一个坐标系是右手坐标系,另一个为左手坐标系,结论依然成立。,,也即坐标变换公式为:,习题,7,7-1,对于点,P(x,y,z),,,(1),写出它绕,x,轴旋转 角,然后再绕,y,轴旋转 角的变换矩阵。,(2),写出它绕,y,轴旋转 角,然后再绕,x,轴旋转 角的变换矩阵。所得到的变换矩阵的结果一样吗,?,7-2,写出绕空间任意轴旋转的变换矩阵。,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服