ImageVerifierCode 换一换
格式:PPT , 页数:78 ,大小:1.23MB ,
资源ID:13052951      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/13052951.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(数据挖掘关联规则.ppt)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数据挖掘关联规则.ppt

1、Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Data Mining:Concepts and Techniques,*,Chapter 4:Mining Frequent Patterns,Association and Correlations,Basic concepts and a road map,Scalable frequent,itemset,mining methods,Mining v

2、arious kinds of association rules,Constraint-based association mining,From association to correlation analysis,Mining colossal patterns,Summary,2026/1/12 周一,1,Data Mining:Concepts and Techniques,What Is Frequent Pattern Analysis?,Frequent pattern,:a pattern(a set of items,subsequences,substructures,

3、etc.)that occurs frequently in a data set,First proposed by Agrawal,Imielinski,and Swami AIS93 in the context of,frequent,itemsets,and,association rule mining,Motivation:Finding inherent regularities in data,What products were often purchased together?Beer and diapers?!,What are the subsequent purch

4、ases after buying a PC?,What kinds of DNA are sensitive to this new drug?,Can we automatically classify web documents?,Applications,Basket data analysis,cross-marketing,catalog design,sale campaign analysis,Web log(click stream)analysis,and DNA sequence analysis.,2026/1/12 周一,2,Data Mining:Concepts

5、and Techniques,关联规则挖掘,关联规则挖掘的典型案例:,购物篮问题,在商场中拥有大量的商品(项目),如:牛奶、面包等,客户将所购买的商品放入到自己的购物篮中。,通过发现顾客放入购物篮中的不同商品之间的联系,分析顾客的购买习惯,哪些物品经常被顾客购买?,同一次购买中,哪些商品经常会被一起购买?,一般用户的购买过程中是否存在一定的购买时间序列?,具体应用:利润最大化,商品货架设计:更加适合客户的购物路径,货存安排:实现超市的零库存管理,用户分类:提供个性化的服务,2026/1/12 周一,3,Data Mining:Concepts and Techniques,关联规则挖掘,简单的

6、说,,关联规则挖掘就是发现大量数据中项集之间有趣的关联,在交易数据、关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的频繁模式、关联、相关性、或因果结构。,应用,购物篮分析、交叉销售、产品目录设计、聚集、分类等,两种策略:,1,。商品放近,增加销量,2,。,商品放远,增加其他商品的销量,2026/1/12 周一,4,Data Mining:Concepts and Techniques,Why Is Freq.Pattern Mining Important?,Freq.pattern:An intrinsic and important property of datasets,F

7、oundation for many essential data mining tasks,Association,correlation,and causality analysis,Sequential,structural(e.g.,sub-graph)patterns,Pattern analysis in spatiotemporal,multimedia,time-series,and stream data,Classification:discriminative,frequent pattern analysis,Cluster analysis:frequent patt

8、ern-based clustering,Data warehousing:iceberg cube and cube-gradient,Semantic data compression:fascicles,Broad applications,2026/1/12 周一,5,Data Mining:Concepts and Techniques,关联规则挖掘形式化定义,给定:,设,I=i,1,i,2,i,m,是项,(item),的,集合。若干项的集合,称为,项集,(,Item Sets,),记,D,为交易,(transaction)T(,或,事务,),的集合,这里交易,T,是项的集合,并且,

9、T,I,。,对应每一个交易有唯一的标识,如交易号,记作,TID,。设,X,是一个,I,中项的集合,如果,X,T,,,那么称交易,T,包含,X,。,寻找:有趣的关联规则,(,强规则,).,2026/1/12 周一,6,Data Mining:Concepts and Techniques,关联规则,所有形如,X,Y,蕴涵式的称为关联规则,这里,X,I,Y,I,,,并且,X,Y=,。,关联规则是有趣的,如果它满足最小支持度阈值与最小置信度阈值,并称之为强规则,2026/1/12 周一,7,Data Mining:Concepts and Techniques,confidence and supp

10、ort,Itemset,X=i,1,i,k,Find all the rules,X,Y,with min confidence and support,Customer,buys diaper,Customer,buys both,Customer,buys beer,support,s,probability,that a transaction contains XY,support(XY)=,同时包含项目集,X,和,Y,的交易数,/,总交易数,用于描述有用性,.,confidence,c,conditional probability,that a transaction having

11、 X also contains,Y,.,confidence(XY)=,同时购买商品,X,和,Y,的交易数,/,购买商品,X,的交易数,用于描述确定性,即,”,值得信赖的程度,”,可靠性,”,2026/1/12 周一,8,Data Mining:Concepts and Techniques,Mining Association Rules,an,Example,For rule,A,C,:,support=support(,A,C,)=50%,confidence=support(,A,C,)/support(,A,)=66.6%,Min.support 50%,Min.confidenc

12、e 50%,Transaction-id,Items bought,10,A,B,C,20,A,C,30,A,D,40,B,E,F,Frequent pattern,Support,A,75%,B,50%,C,50%,A,C,50%,2026/1/12 周一,9,Data Mining:Concepts and Techniques,关联规则的基本形式,关联规则的基本形式:,前提条件结论,支持度,置信度,buys(x,“,diapers,”,),buys(x,“,beers,”,)0.5%,60%,major(x,“,CS,”,)takes(x,“,DB,”,),grade(x,“,A,”,)

13、1%,75%,包含,k,个项目的集合,称为,k-,项集,项集的出现频率是包含项集的事务个数,称为项集的频率、支持计数或者计数,2026/1/12 周一,10,Data Mining:Concepts and Techniques,Basic Concepts:Frequent Patterns,itemset,:A set of one or more items,k-itemset,X=x,1,x,k,(absolute)support,or,support count,of X:Frequency or occurrence of an,itemset,X,(relative),suppo

14、rt,s,is the fraction of transactions that contains X(i.e.,the,probability,that a transaction contains X),An,itemset,X is,frequent,if Xs support is no less than a,minsup,threshold,Customer,buys diaper,Customer,buys both,Customer,buys beer,Tid,Items bought,10,Beer,Nuts,Diaper,20,Beer,Coffee,Diaper,30,

15、Beer,Diaper,Eggs,40,Nuts,Eggs,Milk,50,Nuts,Coffee,Diaper,Eggs,Milk,2026/1/12 周一,11,Data Mining:Concepts and Techniques,Basic Concepts:Association Rules,Find all the rules,X,Y,with minimum support and confidence,support,s,probability,that a transaction contains X Y,confidence,c,conditional probabilit

16、y,that a transaction having X also contains,Y,Let,minsup,=50%,minconf,=50%,Freq.Pat.:,Beer:3,Nuts:3,Diaper:4,Eggs:3,Beer,Diaper:3,Customer,buys diaper,Customer,buys both,Customer,buys beer,Nuts,Eggs,Milk,40,Nuts,Coffee,Diaper,Eggs,Milk,50,Beer,Diaper,Eggs,30,Beer,Coffee,Diaper,20,Beer,Nuts,Diaper,10

17、Items bought,Tid,Association rules:(many more!),Beer,Diaper,(60%,100%),Diaper,Beer,(60%,75%),2026/1/12 周一,12,Data Mining:Concepts and Techniques,Closed Patterns and Max-Patterns,A long pattern contains a combinatorial number of sub-patterns,e.g.,a,1,a,100,contains,(,100,1,)+(,100,2,)+(,1,1,0,0,0,0,

18、)=2,100,1=1.27*10,30,sub-patterns!,Solution:,Mine,closed patterns,and,max-patterns,instead,An,itemset,X,is,closed,if X is,frequent,and there exists,no super-pattern,Y,X,with the same support,as X(proposed by,Pasquier,et al.ICDT99),An,itemset,X is a,max-pattern,if X is frequent and there exists no fr

19、equent super-pattern Y,X(proposed by,Bayardo,SIGMOD98),Closed pattern is a lossless compression of freq.patterns,Reducing the#of patterns and rules,2026/1/12 周一,13,Data Mining:Concepts and Techniques,Closed Patterns and Max-Patterns,Exercise.DB=,Min_sup=1.,What is the set of,closed,itemset,?,:1,:2,W

20、hat is the set of,max-pattern?,:1,What is the set of,all patterns,?,!,2026/1/12 周一,14,Data Mining:Concepts and Techniques,Computational Complexity of Frequent,Itemset,Mining,How many itemsets are potentially to be generated in the worst case?,The number of frequent itemsets to be generated is sensti

21、ve to the minsup threshold,When minsup is low,there exist potentially an exponential number of frequent itemsets,The worst case:M,N,where M:#distinct items,and N:max length of transactions,The worst case complexty vs.the expected probability,Ex.Suppose Walmart has 10,4,kinds of products,The chance t

22、o pick up one product 10,-4,The chance to pick up a particular set of 10 products:10,-40,What is the chance this particular set of 10 products to be frequent 10,3,times in 10,9,transactions?,2026/1/12 周一,15,Data Mining:Concepts and Techniques,Chapter 4:Mining Frequent Patterns,Association and Correl

23、ations,Basic concepts and a road map,Scalable frequent,itemset,mining methods,Mining various kinds of association rules,Constraint-based association mining,From association to correlation analysis,Mining colossal patterns,Summary,2026/1/12 周一,16,Data Mining:Concepts and Techniques,使用,Apriori,方法挖掘关联规

24、则,频繁项集的定义,如果项集满足最小支持度,则称之为频繁项集,(高频项集),频繁项集的基本特征,任何频繁项集的非空子集均为频繁项集。例如:,ABC,是频繁项集,则,AB,、,AC,、,BC,均为频繁项集。,反之:如,AB,不是,频繁项集,则,ABC,不可能,是频繁项集,2026/1/12 周一,17,Data Mining:Concepts and Techniques,Apriori,方法,是一种称作逐层搜索的迭代方法。,用,k-,项集探求(,k+1,),-,项集。,具体地:首先找出频繁,1-,项集,该集合记为,L,1,;,用,L,1,找出频繁,2-,项集的集合,L,2,;,如此继续下去,直

25、到找到最大频繁项集,该方法,主要有连接和剪枝两步构成。,2026/1/12 周一,18,Data Mining:Concepts and Techniques,The,Apriori,Algorithm,An Example,Database TDB,1,st,scan,C,1,L,1,L,2,C,2,C,2,2,nd,scan,C,3,L,3,3,rd,scan,Tid,Items,10,A,C,D,20,B,C,E,30,A,B,C,E,40,B,E,Itemset,sup,A,2,B,3,C,3,D,1,E,3,Itemset,sup,A,2,B,3,C,3,E,3,Itemset,A,

26、B,A,C,A,E,B,C,B,E,C,E,Itemset,sup,A,B,1,A,C,2,A,E,1,B,C,2,B,E,3,C,E,2,Itemset,sup,A,C,2,B,C,2,B,E,3,C,E,2,Itemset,B,C,E,Itemset,sup,B,C,E,2,2026/1/12 周一,19,Data Mining:Concepts and Techniques,由频繁项集,产生关联规则,两步,对每一个,频繁项集,u,产生,u,的所有非空真子集,对,u,的,每一个,非空真子集,s,,,若,support_count(u)/support_count(s)=min_conf,则

27、输出:,s,(u-s),例如:频繁项集,u=B,,,C,E,产生所有非空真子集,6,个,对应有,6,个可能的规则,分别计算每一条规则的,confidence,2026/1/12 周一,20,Data Mining:Concepts and Techniques,Apriori:A Candidate Generation&Test Approach,Apriori,pruning principle,:,If there is,any,itemset which is infrequent,its superset should not be generated/tested!(,Agrawa

28、l&Srikant VLDB94,Mannila,et al.KDD 94),Method:,Initially,scan DB once to get frequent 1-itemset,Generate,length(k+1),candidate,itemsets,from length k,frequent,itemsets,Test,the candidates against DB,Terminate when no frequent or candidate set can be generated,2026/1/12 周一,21,Data Mining:Concepts and

29、 Techniques,The Apriori Algorithm,An Example,Database TDB,1,st,scan,C,1,L,1,L,2,C,2,C,2,2,nd,scan,C,3,L,3,3,rd,scan,Tid,Items,10,A,C,D,20,B,C,E,30,A,B,C,E,40,B,E,Itemset,sup,A,2,B,3,C,3,D,1,E,3,Itemset,sup,A,2,B,3,C,3,E,3,Itemset,A,B,A,C,A,E,B,C,B,E,C,E,Itemset,sup,A,B,1,A,C,2,A,E,1,B,C,2,B,E,3,C,E,

30、2,Itemset,sup,A,C,2,B,C,2,B,E,3,C,E,2,Itemset,B,C,E,Itemset,sup,B,C,E,2,Sup,min,=2,2026/1/12 周一,22,Data Mining:Concepts and Techniques,The Apriori Algorithm(,Pseudo-Code,),C,k,:Candidate itemset of size k,L,k,:frequent itemset of size k,L,1,=frequent items;,for,(,k,=1;,L,k,!=,;,k,+),do begin,C,k+1,=

31、candidates generated from,L,k,;,for each,transaction,t,in database do,increment the count of all candidates in,C,k+1,that are contained in,t,L,k+1,=candidates in,C,k+1,with min_support,end,return,k,L,k,;,2026/1/12 周一,23,Data Mining:Concepts and Techniques,Implementation of Apriori,How to generate ca

32、ndidates?,Step 1:self-joining,L,k,Step 2:pruning,Example of Candidate-generation,L,3,=,abc,abd,acd,ace,bcd,Self-joining:,L,3,*L,3,abcd,from,abc,and,abd,acde,from,acd,and,ace,Pruning:,acde,is removed because,ade,is not in,L,3,C,4,=,abcd,2026/1/12 周一,24,Data Mining:Concepts and Techniques,Candidate Ge

33、neration:An SQL Implementation,SQL Implementation of candidate generation,Suppose the items in,L,k-1,are listed in an order,Step 1:self-joining,L,k-1,insert into,C,k,select,p.item,1,p.item,2,p.item,k-1,q.item,k-1,from,L,k-1,p,L,k-1,q,where,p.item,1,=q.item,1,p.item,k-2,=q.item,k-2,p.item,k-1,Wage:me

34、an=$7/hr(overall mean=$9),2026/1/12 周一,57,Data Mining:Concepts and Techniques,Static,Discretization,of Quantitative Attributes,Discretized,prior to mining using concept hierarchy.,Numeric values are replaced by ranges,In relational database,finding all frequent k-predicate sets will require,k,or,k,+

35、1 table scans,Data cube is well suited for mining,The cells of an n-dimensional,cuboid,correspond to the,predicate sets,Mining from data cubescan be much faster,(income),(age),(),(buys),(age,income),(age,buys),(income,buys),(age,income,buys),2026/1/12 周一,58,Data Mining:Concepts and Techniques,Quanti

36、tative Association Rules,Proposed by Lent,Swami and,Widom,ICDE97,Numeric attributes are,dynamically,discretized,Such that the confidence or compactness of the rules mined is maximized,2-D quantitative association rules:A,quan1,A,quan2,A,cat,Cluster,adjacent,association rules to form general rules us

37、ing a 2-D grid,Example,age(X,“34-35”),income(X,“30-50K”),buys(X,“high resolution TV”),2026/1/12 周一,59,Data Mining:Concepts and Techniques,Mining Other Interesting Patterns,Flexible support constraints(Wang,et al.VLDB02),Some items(e.g.,diamond)may occur rarely but are valuable,Customized,sup,min,spe

38、cification and application,Top-K closed frequent patterns(Han,et al.ICDM02),Hard to specify,sup,min,but top-k,with,length,min,is more desirable,Dynamically raise,sup,min,in FP-tree construction and mining,and select most promising path to mine,2026/1/12 周一,60,Data Mining:Concepts and Techniques,Chap

39、ter 4:Mining Frequent Patterns,Association and Correlations,Basic concepts and a road map,Efficient and scalable frequent,itemset,mining methods,Mining various kinds of association rules,From association mining to correlation analysis,Constraint-based association mining,Mining colossal patterns,Summ

40、ary,2026/1/12 周一,61,Data Mining:Concepts and Techniques,兴趣度的度量,客观度量,两个最为流行的度量,:,支持度和置信度(,support and confidence,),主观度量,(,Silberschatz,&,Tuzhilin,KDD95),一个规则(模式)是感兴趣的,如果,没有想到的,(,用户感到惊讶的,);,可操作的,(,用户在得到结果后,可以在此之上做些什么,),2026/1/12 周一,62,Data Mining:Concepts and Techniques,支持度,-,置信度方法的不足,Example 1:,(,Agg

41、arwal,&Yu,PODS98),5000,个学生中,3000,喜欢打篮球,3750,喜欢吃米饭,2000,同时喜欢打篮球和吃米饭,关联规则:,play basketball,eat cereal 40%,66.7%,该规则具有欺骗性,因为从整个学生情况来看,有,75%,的学生喜欢吃米饭,大大高于,66.7%,。,关联规则:,play basketball,not eat cereal 20%,33.3%,该规则虽然拥有较低的支持度和置信度,但是比较精确。,Basketball,Not basketball,Sum(row),Cereal,2000,1750,3750,Not cereal,

42、1000,250,1250,Sum(col.),3000,2000,5000,2026/1/12 周一,63,Data Mining:Concepts and Techniques,提升:一种兴趣度的度量,设,A,B,是两个项集,,P(A,B)=P(B)*P(A),A,和,B,是独立事件,A,B,的,相关性度量,取值小于,1,,,A and B,负相关,取值大于,1,,,A and B,正相关,如:上例,corr,=0.89,P(B|A)/P(B),称为规则,A=B,的,“,提升,”,挖掘相关性关联规则,,X2,检验是否有统计意义,2026/1/12 周一,64,Data Mining:Con

43、cepts and Techniques,Interestingness Measure:Correlations(Lift),play basketball,eat cereal,40%,66.7%is misleading,The overall%of students eating cereal is 75%66.7%.,play basketball,not eat cereal,20%,33.3%is more accurate,although with lower support and confidence,Measure of dependent/correlated eve

44、nts:,lift,Basketball,Not basketball,Sum(row),Cereal,2000,1750,3750,Not cereal,1000,250,1250,Sum(col.),3000,2000,5000,2026/1/12 周一,65,Data Mining:Concepts and Techniques,Chapter 4:Mining Frequent Patterns,Association and Correlations,Basic concepts and a road map,Efficient and scalable frequent,items

45、et,mining methods,Mining various kinds of association rules,From association mining to correlation analysis,Constraint-based association mining,Mining colossal patterns,Summary,2026/1/12 周一,66,Data Mining:Concepts and Techniques,基于约束的挖掘,使用约束的必要性,产生的多数规则是用户不感兴趣的,应在用户提供的各种约束的指导下进行挖掘,在数据挖掘中常使用的几种约束:,知识

46、类型约束:,指定要挖掘的知识类型,如关联知识,数据约束:,指定与任务相关的数据集,Find product pairs sold together in,Vancouver,in,Dec.98,.,维,/,层次约束,:,指定所用的维或概念结构中的层,in relevance to,region,price,brand,customer category,.,规则约束:,指定要挖掘的规则形式,(,如规则模板,),单价,(price$200).,兴趣度约束:,指定规则兴趣度阈值或统计度量,如,(min_support,3%,min_confidence,60%).,2026/1/12 周一,67,

47、Data Mining:Concepts and Techniques,Constraint-based(Query-Directed)Mining,Finding,all,the patterns in a database,autonomously,?unrealistic!,The patterns could be too many but not focused!,Data mining should be an,interactive,process,User directs what to be mined using a,data mining query language,(

48、or a graphical user interface),Constraint-based mining,User flexibility:provides,constraints,on what to be mined,System optimization:explores such constraints for efficient mining,constraint-based mining:,constraint-pushing,similar to push selection first in DB query processing,Note:still find all t

49、he answers satisfying constraints,not finding some answers in“heuristic search”,2026/1/12 周一,68,Data Mining:Concepts and Techniques,Constraints in Data Mining,Knowledge type constraint,:,classification,association,etc.,Data constraint,using,SQL-like queries,find product pairs sold together in stores

50、 in,Chicago,in,Dec.02,Dimension/level constraint,in relevance to,region,price,brand,customer category,Rule(or pattern)constraint,small sales(price$200),Interestingness constraint,strong rules:min_support,3%,min_confidence,60%,2026/1/12 周一,69,Data Mining:Concepts and Techniques,Constraint-Based Frequ

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服