1、备战中考数学专题训练---平行四边形综合题分类含答案解析 一、平行四边形 1.(问题情景)运用三角形面积相等来求解措施是一种常见等积法,此措施是我们处理几何问题途径之一. 例如:张老师给小聪提出这样一种问题: 如图1,在△ABC中,AB=3,AD=6,问△ABC高AD与CE比是多少? 小聪计算思绪是: 根据题意得:S△ABC=BC•AD=AB•CE. 从而得2AD=CE,∴ 请运用上述材料中所积累经验和措施处理下列问题: (1)(类比探究) 如图2,在▱ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF, 求证:BO平分角AOC.
2、 (2)(探究延伸) 如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间距离为4.求证:PA•PB=2AB. (3)(迁移应用) 如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,AB=,BC=2,AC=,又已知M、N分别为AE、BE中点,连接DM、CN.求△DEM与△CEN周长之和. 【答案】(1)见解析;(2)见解析;(3)5+ 【解析】 分析:(1)、根据平行四边形性质得出△ABF和△BCE面积相等,过点B作OG⊥AF于G,OH⊥CE于H,从而得出AF=CE,然
3、后证明△BOG和△BOH全等,从而得出∠BOG=∠BOH,即角平分线;(2)、过点P作PG⊥n于G,交m于F,根据平行线性质得出△CPF和△DPG全等,延长BP交AC于E,证明△CPE和△DPB全等,根据等积法得出AB=AP×PB,从而得出答案;(3)、,延长AD,BC交于点G,过点A作AF⊥BC于F,设CF=x,根据Rt△ABF和Rt△ACF勾股定理得出x值,根据等积法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,从而得出两个三角形周长之和. 同理:EM+EN=AB 详解:证明:(1)如图2, ∵四边形ABCD是平行四边形, ∴S△ABF=S▱ABCD,S△BC
4、E=S▱ABCD, ∴S△ABF=S△BCE, 过点B作OG⊥AF于G,OH⊥CE于H, ∴S△ABF=AF×BG,S△BCE=CE×BH, ∴AF×BG=CE×BH,即:AF×BG=CE×BH, ∵AF=CE, ∴BG=BH, 在Rt△BOG和Rt△BOH中,, ∴Rt△BOG≌Rt△BOH, ∴∠BOG=∠BOH, ∴OB平分∠AOC, (2)如图3,过点P作PG⊥n于G,交m于F, ∵m∥n, ∴PF⊥AC, ∴∠CFP=∠BGP=90°, ∵点P是CD中点, 在△CPF和△DPG中,, ∴△CPF≌△DPG, ∴PF=PG=FG=2, 延长BP交AC于E, ∵m∥
5、n, ∴∠ECP=∠BDP, ∴CP=DP, 在△CPE和△DPB中,, ∴△CPE≌△DPB, ∴PE=PB, ∵∠APB=90°, ∴AE=AB, ∴S△APE=S△APB, ∵S△APE=AE×PF=AE=AB,S△APB=AP×PB, ∴AB=AP×PB, 即:PA•PB=2AB; (3)如图4,延长AD,BC交于点G, ∵∠BAD=∠B, ∴AG=BG,过点A作AF⊥BC于F, 设CF=x(x>0), ∴BF=BC+CF=x+2, 在Rt△ABF中,AB=, 根据勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2, 在Rt△ACF中,AC=, 根
6、据勾股定理得,AF2=AC2﹣CF2=26﹣x2, ∴34﹣(x+2)2=26﹣x2, ∴x=﹣1(舍)或x=1, ∴AF==5, 连接EG, ∵S△ABG=BG×AF=S△AEG+S△BEG=AG×DE+BG×CE=BG(DE+CE), ∴DE+CE=AF=5, 在Rt△ADE中,点M是AE中点, ∴AE=2DM=2EM, 同理:BE=2CN=2EN, ∵AB=AE+BE, ∴2DM+2CN=AB, ∴DM+CN=AB, 同理:EM+EN=AB ∴△DEM与△CEN周长之和=DE+DM+EM+CE+CN+EN=(DE+CE)+[(DM+CN)+(EM+EN)] =(DE
7、CN)+AB=5+. 点睛:本题重要考察就是三角形全等判定与性质以及三角形等积法,综合性非常强,难度较大.在处理这个问题关键就是作出辅助线,然后根据勾股定理和三角形全等得出各个线段之间关系. 2.如图1,四边形ABCD是正方形,G是CD边上一种动点(点G与C、D不重叠),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE. (1)①猜想图1中线段BG、线段DE长度关系及所在直线位置关系,不必证明; ②将图1中正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观测、测量等措施判断①中得到结论与否仍然成立,并证明你判断. (2)将原题中正
8、方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到结论哪些成立,哪些不成立?若成立,以图4为例简要阐明理由. (3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=,求BE2+DG2值. 【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25. 【解析】 分析:(1)①根据正方形性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间关系; ②结合正方形性质,根据SAS仍然可以判定△BCG≌△DCE,从而证明结论; (2)根据
9、两条对应边比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中位置关系仍然成立; (3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形长、宽平方和. 详解:(1)①BG⊥DE,BG=DE; ②∵四边形ABCD和四边形CEFG是正方形, ∴BC=DC,CG=CE,∠BCD=∠ECG=90°, ∴∠BCG=∠DCE, ∴△BCG≌△DCE, ∴BG=DE,∠CBG=∠CDE, 又∵∠CBG+∠BHC=90°, ∴∠CDE+∠DHG=90°, ∴BG⊥DE. (2)∵AB=a,BC=b,CE=ka,CG=kb, ∴, 又∵∠BCG=∠DCE,
10、 ∴△BCG∽△DCE, ∴∠CBG=∠CDE, 又∵∠CBG+∠BHC=90°, ∴∠CDE+∠DHG=90°, ∴BG⊥DE. (3)连接BE、DG. 根据题意,得AB=3,BC=2,CE=1.5,CG=1, ∵BG⊥DE,∠BCD=∠ECG=90° ∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25. 点睛:此题综合运用了全等三角形判定和性质、相似三角形判定和性质以及勾股定理. 3.四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所
11、在直线交于点G,连接AG,直线AG交BE于点H. (1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE位置关系,并加以证明; (2)如图2,在(1)条件下,连接HO,试阐明HO平分∠BHG; (3)当点E、F运动到如图3所示位置时,其他条件不变,请将图形补充完整,并直接写出∠BHO度数. 【答案】(1)①证明见解析;②AG⊥BE.理由见解析;(2)证明见解析;(3)∠BHO=45°. 【解析】 试题分析:(1)①根据正方形性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,因此∠DAG=∠DCG;②根据正方形性
12、质得AB=DC,∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,因此∠DAG=∠ABE,然后运用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断AG⊥BE; (2)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立; (3)如答图2所示,与(1)同理,可以证明AG⊥BE;过点O作OM⊥BE于点M,ON⊥AG于点N,构造全等三角形△AON≌△BOM,从而证明OMHN为正方形,因此HO平分∠BHG,即∠BHO=45°. 试
13、题解析:(1)①∵四边形ABCD为正方形, ∴DA=DC,∠ADB=∠CDB=45°, 在△ADG和△CDG中 , ∴△ADG≌△CDG(SAS), ∴∠DAG=∠DCG; ②AG⊥BE.理由如下: ∵四边形ABCD为正方形, ∴AB=DC,∠BAD=∠CDA=90°, 在△ABE和△DCF中 , ∴△ABE≌△DCF(SAS), ∴∠ABE=∠DCF, ∵∠DAG=∠DCG, ∴∠DAG=∠ABE, ∵∠DAG+∠BAG=90°, ∴∠ABE+∠BAG=90°, ∴∠AHB=90°, ∴AG⊥BE; (2)由(1)可知AG⊥BE. 如答图1所示,过点O
14、作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形. ∴∠MON=90°, 又∵OA⊥OB, ∴∠AON=∠BOM. ∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°, ∴∠OAN=∠OBM. 在△AON与△BOM中, ∴△AON≌△BOM(AAS). ∴OM=ON, ∴矩形OMHN为正方形, ∴HO平分∠BHG. (3)将图形补充完整,如答图2示,∠BHO=45°. 与(1)同理,可以证明AG⊥BE. 过点O作OM⊥BE于点M,ON⊥AG于点N, 与(2)同理,可以证明△AON≌△BOM, 可得OMHN为正方形,因此HO平分∠BHG
15、 ∴∠BHO=45°. 考点:1、四边形综合题;2、全等三角形判定与性质;3、正方形性质 4.已知:在菱形ABCD中,E,F是BD上两点,且AE∥CF. 求证:四边形AECF是菱形. 【答案】见解析 【解析】 【分析】 由菱形性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形判定和菱形判定可得四边形AECF是菱形. 【详解】 证明:∵四边形ABCD是菱形 ∴AB∥CD,AB=CD,∠ADF=∠CDF, ∵AB=CD,∠ADF=∠CDF,DF=DF ∴△AD
16、F≌△CDF(SAS) ∴AF=CF, ∵AB∥CD,AE∥CF ∴∠ABE=∠CDF,∠AEF=∠CFE ∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD ∴△ABE≌△CDF(AAS) ∴AE=CF,且AE∥CF ∴四边形AECF是平行四边形 又∵AF=CF, ∴四边形AECF是菱形 【点睛】 本题重要考察菱形判定定理,首先要判定其为平行四边形,这是菱形判定基本判定. 5.如图,△ABC中,AD是边BC上中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC. (1)求证:AD=EC; (2)当∠BAC=Rt∠时,求证
17、四边形ADCE是菱形. 【答案】(1)见解析; (2)见解析. 【解析】 【分析】 (1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可; (2)由∠BAC=90°,AD是边BC上中线,得AD=BD=CD,即可证明. 【详解】 (1)证明:∵AE∥BC,DE∥AB , ∴四边形ABDE是平行四边形, ∴AE=BD, ∵AD是边BC上中线, ∴BD=DC, ∴AE=DC, 又∵AE∥BC, ∴四边形ADCE是平行四边形. (2) 证明:∵∠BAC=90°,AD是边BC上中线. ∴AD=CD ∵四边形ADCE是平行四边形, ∴四边形AD
18、CE是菱形. 【点睛】 本题考察了平行四边形判定、菱形判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形判定措施是证明关键. 6.(1)如图1,将矩形折叠,使落在对角线上,折痕为,点落在点处,若,则度数为______. (2)小明手中有一张矩形纸片,,. (画一画)如图2,点在这张矩形纸片边上,将纸片折叠,使落在所在直线上,折痕设为(点,分别在边,上),运用直尺和圆规画出折痕(不写作法,保留作图痕迹,并用黑色水笔把线段描清晰); (算一算)如图3,点在这张矩形纸片边上,将纸片折叠,使落在射线上,折痕为,点分别落在点,处,若,求长. 【答案】(1)2
19、1;(2)画一画;见解析;算一算: 【解析】 【分析】 (1)运用平行线性质以及翻折不变性即可处理问题; (2)【画一画】,如图2中,延长BA交CE延长线由G,作∠BGC角平分线交AD于M,交BC于N,直线MN即为所求; 【算一算】首先求出GD=9-,由矩形性质得出AD∥BC,BC=AD=9,由平行线性质得出∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,证出∠DFG=∠DGF,由等腰三角形判定定理证出DF=DG=,再由勾股定理求出CF,可得BF,再运用翻折不变性,可知FB′=FB,由此即可处理问题. 【详解】 (1)如图1所示: ∵四边形ABCD是矩形, ∴AD∥
20、BC, ∴∠ADB=∠DBC=42°, 由翻折性质可知,∠DBE=∠EBC=∠DBC=21°, 故答案为21. (2)【画一画】如图所示: 【算一算】 如3所示: ∵AG=,AD=9, ∴GD=9-, ∵四边形ABCD是矩形, ∴AD∥BC,BC=AD=9, ∴∠DGF=∠BFG, 由翻折不变性可知,∠BFG=∠DFG, ∴∠DFG=∠DGF, ∴DF=DG=, ∵CD=AB=4,∠C=90°, ∴在Rt△CDF中,由勾股定理得:CF=, ∴BF=BC-CF=9, 由翻折不变性可知,FB=FB′=, ∴B′D=DF-FB′=. 【点睛】 四
21、边形综合题,考察了矩形性质、翻折变换性质、勾股定理、等腰三角形判定、平行线性质等知识,解题关键是灵活运用所学知识处理问题,学会运用翻折不变性处理问题. 7.△ABC为等边三角形,.. (1)求证:四边形是菱形. (2)若是角平分线,连接,找出图中所有等腰三角形. 【答案】(1)证明见解析;(2)图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE. 【解析】 【分析】 (1)先求证BD∥AF,证明四边形ABDF是平行四边形,再运用有一组邻边相等平行四边形是菱形即可证明;(2)先运用BD平分∠ABC,得到BD垂直平分线段AC,进而证明△DAC是等腰三角
22、形,根据BD⊥AC,AF⊥AC,找到角度之间关系,证明△DAE是等腰三角形,进而得到BC=BD=BA=AF=DF,即可解题,见详解. 【详解】 (1)如图1中,∵∠BCD=∠BDC, ∴BC=BD, ∵△ABC是等边三角形, ∴AB=BC, ∵AB=AF, ∴BD=AF, ∵∠BDC=∠AEC, ∴BD∥AF, ∴四边形ABDF是平行四边形, ∵AB=AF, ∴四边形ABDF是菱形. (2)解:如图2中,∵BA=BC,BD平分∠ABC, ∴BD垂直平分线段AC, ∴DA=DC, ∴△DAC是等腰三角形, ∵AF∥BD,BD⊥AC ∴AF⊥AC, ∴∠EAC
23、=90°, ∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°, ∴∠DAE=∠DEA, ∴DA=DE, ∴△DAE是等腰三角形, ∵BC=BD=BA=AF=DF, ∴△BCD,△ABD,△ADF都是等腰三角形, 综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE. 【点睛】 本题考察菱形判定,等边三角形性质,等腰三角形判定等知识,属于中考常考题型,纯熟掌握等腰三角形性质是解题关键. 8.在中,,BD为AC边上中线,过点C作于点E,过点A作BD平行线,交CE延长线于点F,在AF延长线上截取,连接BG,DF.
24、 求证:; 求证:四边形BDFG为菱形; 若,,求四边形BDFG周长. 【答案】(1)证明见解析(2)证明见解析(3)8 【解析】 【分析】 运用平行线性质得到,再运用直角三角形斜边上中线等于斜边二分之一即可得证, 运用平行四边形判定定理判定四边形BDFG为平行四边形,再运用得结论即可得证, 设,则,运用菱形性质和勾股定理得到CF、AF和AC之间关系,解出x即可. 【详解】 证明:,, , 又为AC中点, , 又, , 证明:,, 四边形BDFG为平行四边形, 又, 四边形BDFG为菱形, 解:设,则,, 在中,, 解得:,舍去, , 菱形
25、BDFG周长为8. 【点睛】 本题考察了菱形判定与性质直角三角形斜边上中线,勾股定理等知识,对掌握这些定义性质及判定并结合图形作答是处理本题关键. 9.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重叠),GE⊥DC于点E,GF⊥BC于点F,连结AG. (1)写出线段AG,GE,GF长度之间数量关系,并阐明理由; (2)若正方形ABCD边长为1,∠AGF=105°,求线段BG长. 【答案】(1)AG2=GE2+GF2(2) 【解析】 试题分析:(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,运用勾股
26、定理即可证明; (2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BN÷cos30°即可处理问题. 试题解析:(1)结论:AG2=GE2+GF2. 理由:连接CG. ∵四边形ABCD是正方形, ∴A、C有关对角线BD对称, ∵点G在BD上, ∴GA=GC, ∵GE⊥DC于点E,GF⊥BC于点F, ∴∠GEC=∠ECF=∠CFG=90°, ∴四边形EGFC是矩形, ∴CF=GE, 在Rt△GFC中,∵CG2=G
27、F2+CF2, ∴AG2=GF2+GE2. (2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x. ∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°, ∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°, ∴∠AMN=30°, ∴AM=BM=2x,MN=x, 在Rt△ABN中,∵AB2=AN2+BN2, ∴1=x2+(2x+x)2, 解得x=, ∴BN=, ∴BG=BN÷cos30°=. 考点:1、正方形性质,2、矩形判定和性质,3、勾股定理,4、直角三角形30度性质 10.(问题发现) (1)如图(1)四边形ABC
28、D中,若AB=AD,CB=CD,则线段BD,AC位置关系为 ; (拓展探究) (2)如图(2)在Rt△ABC中,点F为斜边BC中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN形状,并阐明理由; (处理问题) (3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方值. 【答案】(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或16﹣8 【解析】 【分析】 (
29、1)根据点A在线段BD垂直平分线上,点C在线段BD垂直平分线上,即可得出AC垂直平分BD; (2)根据Rt△ABC中,点F为斜边BC中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形; (3)分两种状况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别根据旋转性质以及勾股定理,即可得到结论. 【详解】 (1)∵AB=AD,CB=CD, ∴点A在线段BD垂直平分线上,点C在线段BD垂直平分线上, ∴
30、AC垂直平分BD, 故答案为:AC垂直平分BD; (2)四边形FMAN是矩形.理由: 如图2,连接AF, ∵Rt△ABC中,点F为斜边BC中点, ∴AF=CF=BF, 又∵等腰三角形ABD 和等腰三角形ACE, ∴AD=DB,AE=CE, ∴由(1)可得,DF⊥AB,EF⊥AC, 又∵∠BAC=90°, ∴∠AMF=∠MAN=∠ANF=90°, ∴四边形AMFN是矩形; (3)BD′平方为16+8或16﹣8. 分两种状况: ①以点A为旋转中心将正方形ABCD逆时针旋转60°, 如图所示:过D'作D'E⊥AB,交BA延长线于E, 由旋转可得,∠DAD'=6
31、0°, ∴∠EAD'=30°, ∵AB=2=AD', ∴D'E=AD'=,AE=, ∴BE=2+, ∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8 ②以点A为旋转中心将正方形ABCD顺时针旋转60°, 如图所示:过B作BF⊥AD'于F, 旋转可得,∠DAD'=60°, ∴∠BAD'=30°, ∵AB=2=AD', ∴BF=AB=,AF=, ∴D'F=2﹣, ∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8 综上所述,BD′平方长度为16+8或16﹣8. 【点睛】 本题属于四边形综合题,重要考察了正方形
32、性质,矩形判定,旋转性质,线段垂直平分线性质以及勾股定理综合运用,处理问题关键是作辅助线构造直角三角形,根据勾股定理进行计算求解.解题时注意:有三个角是直角四边形是矩形. 11.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上点F处,过点F作FG∥CD,交AE于点G,连接DG. (1)求证:四边形DEFG为菱形; (2)若CD=8,CF=4,求值. 【答案】(1)证明见试题解析;(2). 【解析】 试题分析:(1)由折叠性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱
33、形; (2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出值. 试题解析:(1)由折叠性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形; (2)设DE=x,根据折叠性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=. 考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形判定与性质;4.矩形性质;5.综合题. 12.已知边长为1正方形ABCD中, P是对角线AC上一种动点(与点A、C不重叠),过点P作PE⊥PB ,PE交射线DC
34、于点E,过点E作EF⊥AC,垂足为点F. (1)当点E落在线段CD上时(如图), ①求证:PB=PE; ②在点P运动过程中,PF长度与否发生变化?若不变,试求出这个不变值,若变化,试阐明理由; (2)当点E落在线段DC延长线上时,在备用图上画出符合规定大体图形,并判断上述(1)中结论与否仍然成立(只需写出结论,不需要证明); (3)在点P运动过程中,△PEC能否为等腰三角形?假如能,试求出AP长,假如不能,试阐明理由. 【答案】(1)①证明见解析;②点PP在运动过程中,PF长度不变,值为;(2)画图见解析,成立 ;(3)能,1. 【解析】 分析:(1)①过点P作PG⊥BC于
35、G,过点P作PH⊥DC于H,如图1.要证PB=PE,只需证到△PGB≌△PHE即可;②连接BD,如图2.易证△BOP≌△PFE,则有BO=PF,只需求出BO长即可. (2)根据条件即可画出符合规定图形,同理可得(1)中结论仍然成立. (3)可分点E在线段DC上和点E在线段DC延长线上两种状况讨论,通过计算就可求出符合规定AP长. 详解:(1)①证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1. ∵四边形ABCD是正方形,PG⊥BC,PH⊥DC, ∴∠GPC=∠ACB=∠ACD=∠HPC=45°. ∴PG=PH,∠GPH=∠PGB=∠PHE=90°. ∵PE⊥PB即
36、∠BPE=90°, ∴∠BPG=90°﹣∠GPE=∠EPH. 在△PGB和△PHE中, , ∴△PGB≌△PHE(ASA), ∴PB=PE. ②连接BD,如图2. ∵四边形ABCD是正方形,∴∠BOP=90°. ∵PE⊥PB即∠BPE=90°, ∴∠PBO=90°﹣∠BPO=∠EPF. ∵EF⊥PC即∠PFE=90°, ∴∠BOP=∠PFE. 在△BOP和△PFE中, ∴△BOP≌△PFE(AAS), ∴BO=PF. ∵四边形ABCD是正方形, ∴OB=OC,∠BOC=90°, ∴BC=OB. ∵BC=1,∴OB=, ∴PF=. ∴点PP在运动
37、过程中,PF长度不变,值为. (2)当点E落在线段DC延长线上时,符合规定图形如图3所示. 同理可得:PB=PE,PF=. (3)①若点E在线段DC上,如图1. ∵∠BPE=∠BCE=90°,∴∠PBC+∠PEC=180°. ∵∠PBC<90°,∴∠PEC>90°. 若△PEC为等腰三角形,则EP=EC. ∴∠EPC=∠ECP=45°, ∴∠PEC=90°,与∠PEC>90°矛盾, ∴当点E在线段DC上时,△PEC不也许是等腰三角形. ②若点E在线段DC延长线上,如图4. 若△PEC是等腰三角形, ∵∠PCE=135°, ∴CP=CE, ∴∠CPE=∠C
38、EP=22.5°. ∴∠APB=180°﹣90°﹣22.5°=67.5°. ∵∠PRC=90°+∠PBR=90°+∠CER, ∴∠PBR=∠CER=22.5°, ∴∠ABP=67.5°, ∴∠ABP=∠APB. ∴AP=AB=1. ∴AP长为1. 点睛:本题重要考察了正方形性质、等腰三角形性质、全等三角形判定与性质、角平分线性质、勾股定理、四边形内角和定理、三角形内角和定理及外角性质等知识,有一定综合性,而通过添加辅助线证明三角形全等是处理本题关键. 13.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于
39、点H,再连接EF. (1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC; (2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中两个结论与否成立?若成立,直接写出结论即可;若不成立,请你直接写出你猜想成果; (3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间数量关系. 【答案】(1)见解析; (2)EF⊥BC仍然成立; (3)EF=BC 【解析】 试题分析:(1)由平行四边形性质得到BH=HC=BC,OH=HF,再由等边三角形性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可; (2)由平
40、行四边形性质得到BH=HC=BC,OH=HF,再由等腰直角三角形性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可; (3)由平行四边形性质得到BH=HC=BC,OH=HF,再由等腰三角形性质和AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可. 试题解析:(1)连接AH,如图1, ∵四边形OBFC是平行四边形, ∴BH=HC=BC,OH=HF, ∵△ABC是等边三角形, ∴AB=BC,AH⊥BC, 在Rt△ABH中,AH2=AB2﹣BH2, ∴AH==BC, ∵OA=AE,OH=HF, ∴AH是△OEF中位线, ∴AH=EF
41、AH∥EF, ∴EF⊥BC,BC=EF, ∴EF⊥BC,EF=BC; (2)EF⊥BC仍然成立,EF=BC,如图2, ∵四边形OBFC是平行四边形, ∴BH=HC=BC,OH=HF, ∵△ABC是等腰三角形, ∴AB=BC,AH⊥BC, 在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2, ∴AH=BH=BC, ∵OA=AE,OH=HF, ∴AH是△OEF中位线, ∴AH=EF,AH∥EF, ∴EF⊥BC,BC=EF, ∴EF⊥BC,EF=BC; (3)如图3, ∵四边形OBFC是平行四边形, ∴BH=HC=BC,OH=HF, ∵
42、△ABC是等腰三角形, ∴AB=kBC,AH⊥BC, 在Rt△ABH中,AH2=AB2﹣BH2=(kBC)2﹣(BC)2=(k2-)BC2, ∴AH=BH=BC, ∵OA=AE,OH=HF, ∴AH是△OEF中位线, ∴AH=EF,AH∥EF, ∴EF⊥BC,BC=EF, ∴EF=BC. 考点:四边形综合题. 14.(本题14分)小明在学习平行线有关知识时总结了如下结论:端点分别在两条平行线上所有线段中,垂直于平行线线段最短. 小明应用这个结论进行了下列探索活动和问题处理. 问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上一动点,以P
43、B,PA为边构造 □APBQ,求对角线PQ最小值及PQ最小时值. (1)在处理这个问题时,小明构造出了如图2辅助线,则PQ最小值为 ,当PQ最小时 = _____ __; (2)小明对问题1做了简单变式思考.如图3,P为AB边上一动点,延长PA到点E,使AE=nPA(n 为不小于0常数).以PE,PC为边作□PCQE,试求对角线PQ长最小值,并求PQ最小时值; 问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3. (1)如图4,若为上任意一点,以,为边作□.试求对角线长最小值和PQ最小时值. (2)若为上任意一点,延长到,
44、使,再以,为边作□.请直接写出对角线长最小值和PQ最小时值. 【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,.(2)PQ最小值为.. 【解析】 试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形APBQ是平行四边形可得AP=QB=PC,从而可求值.(2)由题可知:当QP⊥AC时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC中,∠C=90°,AC=4,BC=3,运用面积可求出CD=,然后可求出AD=, 由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,因此AP=.因此=.问题2:(1)
45、设对角线与相交于点.Rt≌Rt.因此AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边形BPQH为矩形,从而QH=BP=AP.因此.(2)根据题意画出图形,当 AB时,长最小,PQ最小值为.. 试题解析:问题1:(1)3,; (2)过点C作CD⊥AB于点D. 由题意可知当PQ⊥AB时,PQ最短.因此此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.由于∠BCA=90°,AC=4, BC=3,因此AB=5.因此CD=.因此PQ=. 在Rt△ACD中AC=4,CD=,因此AD=. 由于AE=nPA,因此PE==CQ=PD=AD-AP=
46、. 因此AP=.因此=. 问题2: (1)如图2,设对角线与相交于点. 因此G是DC中点, 作QHBC,交BC延长线于H, 由于AD//BC,因此. 因此. 又,因此Rt≌Rt.因此AD=HC,QH=AP. 由图知,当 AB时,长最小,即=CH=4. 易得四边形BPQH为矩形,因此QH=BP=AP.因此. (若学生有能力从梯形中位线角度考虑,若对即可评分.但讲评时不作规定) (2)PQ最小值为.. 考点:1.直角三角形性质;2.全等三角形判定与性质;3.平行四边形性质;4矩形判定与性质. 15.如图,正方形ABCO边OA、OC在坐标轴上,点B坐标为(3,3)
47、.将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED延长线交线段BC于点P,连AP、AG. (1)求证:△AOG≌△ADG; (2)求∠PAG度数;并判断线段OG、PG、BP之间数量关系,阐明理由; (3)当∠1=∠2时,求直线PE解析式; (4)在(3)条件下,直线PE上与否存在点M,使以M、A、G为顶点三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请阐明理由. 【答案】(1)见解析(2)∠PAG =45°,PG=OG+BP.理由见解析(3)y=x﹣3.(4)、. 【解析】 试题分析:(1)由AO=AD,A
48、G=AG,根据斜边和一条直角边对应相等两个直角三角形全等,判断出△AOG≌△ADG即可.(2)首先根据三角形全等判定措施,判断出△ADP≌△ABP,再结合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根据∠1+∠DAG+∠DAP+∠BAP=90°,求出∠PAG度数;最终判断出线段OG、PG、BP之间数量关系即可.(3)首先根据△AOG≌△ADG,判断出∠AGO=∠AGD;然后根据∠1+∠AGO=90°,∠2+∠PGC=90°,判断出当∠1=∠2时,∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,求出∠1=∠2=30°;最终确定出P、G两点坐标,即可判断
49、出直线PE解析式. (4)根据题意,分两种状况:①当点M在x轴负半轴上时;②当点M在EP延长线上时;根据以M、A、G为顶点三角形是等腰三角形,求出M点坐标是多少即可. 试题解析:(1)在Rt△AOG和Rt△ADG中,(HL) ∴△AOG≌△ADG. (2)在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP, 则∠DAP=∠BAP; ∵△AOG≌△ADG, ∴∠1=∠DAG; 又∵∠1+∠DAG+∠DAP+∠BAP=90°, ∴2∠DAG+2∠DAP=90°, ∴∠DAG+∠DAP=45°, ∵∠PAG=∠DAG+∠DAP, ∴∠PAG=45°;
50、 ∵△AOG≌△ADG, ∴DG=OG, ∵△ADP≌△ABP, ∴DP=BP, ∴PG=DG+DP=OG+BP. (3)解:∵△AOG≌△ADG, ∴∠AGO=∠AGD, 又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2, ∴∠AGO=∠PGC, 又∵∠AGO=∠AGD, ∴∠AGO=∠AGD=∠PGC, 又∵∠AGO+∠AGD+∠PGC=180°, ∴∠AGO=∠AGD=∠PGC=180°÷3=60°, ∴∠1=∠2=90°﹣60°=30°; 在Rt△AOG中, ∵AO=3, ∴OG=AOtan30°=3×=,






