1、初三数学平行四边形专题培优练习题(含答案)附详细答案 一、平行四边形 1.(问题情景)运用三角形面积相等来求解措施是一种常见等积法,此措施是我们处理几何问题途径之一. 例如:张老师给小聪提出这样一种问题: 如图1,在△ABC中,AB=3,AD=6,问△ABC高AD与CE比是多少? 小聪计算思绪是: 根据题意得:S△ABC=BC•AD=AB•CE. 从而得2AD=CE,∴ 请运用上述材料中所积累经验和措施处理下列问题: (1)(类比探究) 如图2,在▱ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF, 求证:BO平分角AOC. (
2、2)(探究延伸) 如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间距离为4.求证:PA•PB=2AB. (3)(迁移应用) 如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,AB=,BC=2,AC=,又已知M、N分别为AE、BE中点,连接DM、CN.求△DEM与△CEN周长之和. 【答案】(1)见解析;(2)见解析;(3)5+ 【解析】 分析:(1)、根据平行四边形性质得出△ABF和△BCE面积相等,过点B作OG⊥AF于G,OH⊥CE于H,从而得出AF=CE,然后证
3、明△BOG和△BOH全等,从而得出∠BOG=∠BOH,即角平分线;(2)、过点P作PG⊥n于G,交m于F,根据平行线性质得出△CPF和△DPG全等,延长BP交AC于E,证明△CPE和△DPB全等,根据等积法得出AB=AP×PB,从而得出答案;(3)、,延长AD,BC交于点G,过点A作AF⊥BC于F,设CF=x,根据Rt△ABF和Rt△ACF勾股定理得出x值,根据等积法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,从而得出两个三角形周长之和. 同理:EM+EN=AB 详解:证明:(1)如图2, ∵四边形ABCD是平行四边形, ∴S△ABF=S▱ABCD,S△BCE=
4、S▱ABCD, ∴S△ABF=S△BCE, 过点B作OG⊥AF于G,OH⊥CE于H, ∴S△ABF=AF×BG,S△BCE=CE×BH, ∴AF×BG=CE×BH,即:AF×BG=CE×BH, ∵AF=CE, ∴BG=BH, 在Rt△BOG和Rt△BOH中,, ∴Rt△BOG≌Rt△BOH, ∴∠BOG=∠BOH, ∴OB平分∠AOC, (2)如图3,过点P作PG⊥n于G,交m于F, ∵m∥n, ∴PF⊥AC, ∴∠CFP=∠BGP=90°, ∵点P是CD中点, 在△CPF和△DPG中,, ∴△CPF≌△DPG, ∴PF=PG=FG=2, 延长BP交AC于E, ∵m∥n,
5、 ∴∠ECP=∠BDP, ∴CP=DP, 在△CPE和△DPB中,, ∴△CPE≌△DPB, ∴PE=PB, ∵∠APB=90°, ∴AE=AB, ∴S△APE=S△APB, ∵S△APE=AE×PF=AE=AB,S△APB=AP×PB, ∴AB=AP×PB, 即:PA•PB=2AB; (3)如图4,延长AD,BC交于点G, ∵∠BAD=∠B, ∴AG=BG,过点A作AF⊥BC于F, 设CF=x(x>0), ∴BF=BC+CF=x+2, 在Rt△ABF中,AB=, 根据勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2, 在Rt△ACF中,AC=, 根据勾
6、股定理得,AF2=AC2﹣CF2=26﹣x2, ∴34﹣(x+2)2=26﹣x2, ∴x=﹣1(舍)或x=1, ∴AF==5, 连接EG, ∵S△ABG=BG×AF=S△AEG+S△BEG=AG×DE+BG×CE=BG(DE+CE), ∴DE+CE=AF=5, 在Rt△ADE中,点M是AE中点, ∴AE=2DM=2EM, 同理:BE=2CN=2EN, ∵AB=AE+BE, ∴2DM+2CN=AB, ∴DM+CN=AB, 同理:EM+EN=AB ∴△DEM与△CEN周长之和=DE+DM+EM+CE+CN+EN=(DE+CE)+[(DM+CN)+(EM+EN)] =(DE+C
7、N)+AB=5+. 点睛:本题重要考察就是三角形全等判定与性质以及三角形等积法,综合性非常强,难度较大.在处理这个问题关键就是作出辅助线,然后根据勾股定理和三角形全等得出各个线段之间关系. 2.如图1,正方形ABCD一边AB在直尺一边所在直线MN上,点O是对角线AC、BD交点,过点O作OE⊥MN于点E. (1)如图1,线段AB与OE之间数量关系为 .(请直接填结论) (2)保证点A一直在直线MN上,正方形ABCD绕点A旋转θ(0<θ<90°),过点 B作BF⊥MN于点F. ①如图2,当点O、B两点均在直线MN右侧时,试猜想线段AF、BF与OE之间存在怎样数量关系?
8、请阐明理由. ②如图3,当点O、B两点分别在直线MN两侧时,此时①中结论与否仍然成立呢?若成立,请直接写出结论;若不成立,请写出变化后结论并证明. ③当正方形ABCD绕点A旋转到如图4位置时,线段AF、BF与OE之间数量关系为 .(请直接填结论) 【答案】(1)AB=2OE;(2)①AF+BF=2OE,证明见解析;②AF﹣BF=2OE 证明见解析;③BF﹣AF=2OE, 【解析】 试题分析:(1)运用直角三角形斜边中线等于斜边二分之一即可得出结论; (2)①过点B作BH⊥OE于H,可得四边形BHEF是矩形,根据矩形对边相等可得EF=BH,BF=HE,根据正方形对角线相等且
9、互相垂直平分可得OA=OB,∠AOB=90°,再根据同角余角相等求出∠AOE=∠OBH,然后运用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证; ②过点B作BH⊥OE交OE延长线于H,可得四边形BHEF是矩形,根据矩形对边相等可得EF=BH,BF=HE,根据正方形对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角余角相等求出∠AOE=∠OBH,然后运用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证; ③同②措施可证
10、. 试题解析:(1)∵AC,BD是正方形对角线, ∴OA=OC=OB,∠BAD=∠ABC=90°, ∵OE⊥AB, ∴OE=AB, ∴AB=2OE, (2)①AF+BF=2OE 证明:如图2,过点B作BH⊥OE于点H ∴∠BHE=∠BHO=90° ∵OE⊥MN,BF⊥MN ∴∠BFE=∠OEF=90° ∴四边形EFBH为矩形 ∴BF=EH,EF=BH ∵四边形ABCD为正方形 ∴OA=OB,∠AOB=90° ∴∠AOE+∠HOB=∠OBH+∠HOB=90° ∴∠AOE=∠OBH ∴△AEO≌△OHB(AAS) ∴AE=OH,OE=BH ∴AF+BF=A
11、E+EF+BF=OH+BH+EH=OE+OE=2OE. ②AF﹣BF=2OE 证明:如图3,延长OE,过点B作BH⊥OE于点H ∴∠EHB=90° ∵OE⊥MN,BF⊥MN ∴∠AEO=∠HEF=∠BFE=90° ∴四边形HBFE为矩形 ∴BF=HE,EF=BH ∵四边形ABCD是正方形 ∴OA=OB,∠AOB=90° ∴∠AOE+∠BOH=∠OBH+∠BOH ∴∠AOE=∠OBH ∴△AOE≌△OBH(AAS) ∴AE=OH,OE=BH, ∴AF﹣BF =AE+EF﹣HE=OH﹣HE+OE=OE+OE=2OE ③BF﹣AF=2OE, 如图4,作OG⊥
12、BF于G,则四边形EFGO是矩形, ∴EF=GO,GF=EO,∠GOE=90°, ∴∠AOE+∠AOG=90°. 在正方形ABCD中,OA=OB,∠AOB=90°, ∴∠AOG+∠BOG=90°, ∴∠AOE=∠BOG. ∵OG⊥BF,OE⊥AE, ∴∠AEO=∠BGO=90°. ∴△AOE≌△BOG(AAS), ∴OE=OG,AE=BG, ∵AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF, ∴BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE, ∴BF﹣AF=2OE. 3.已知:在菱形ABCD中,E,F
13、是BD上两点,且AE∥CF. 求证:四边形AECF是菱形. 【答案】见解析 【解析】 【分析】 由菱形性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形判定和菱形判定可得四边形AECF是菱形. 【详解】 证明:∵四边形ABCD是菱形 ∴AB∥CD,AB=CD,∠ADF=∠CDF, ∵AB=CD,∠ADF=∠CDF,DF=DF ∴△ADF≌△CDF(SAS) ∴AF=CF, ∵AB∥CD,AE∥CF ∴∠ABE=∠CDF,∠AEF=∠CFE ∴∠AEB=∠CFD
14、∠ABE=∠CDF,AB=CD ∴△ABE≌△CDF(AAS) ∴AE=CF,且AE∥CF ∴四边形AECF是平行四边形 又∵AF=CF, ∴四边形AECF是菱形 【点睛】 本题重要考察菱形判定定理,首先要判定其为平行四边形,这是菱形判定基本判定. 4.如图,四边形ABCD中,∠BCD=∠D=90°,E是边AB中点.已知AD=1,AB=2. (1)设BC=x,CD=y,求y有关x函数关系式,并写出定义域; (2)当∠B=70°时,求∠AEC度数; (3)当△ACE为直角三角形时,求边BC长. 【答案】(1);(2)∠AEC=105°;(3)边BC长为2或.
15、解析】 试题分析:(1)过A作AH⊥BC于H,得到四边形ADCH为矩形.在△BAH中,由勾股定理即可得出结论. (2)取CD中点T,连接TE,则TE是梯形中位线,得ET∥AD,ET⊥CD,∠AET=∠B=70°. 又AD=AE=1,得到∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,即可得到结论. (3)分两种状况讨论:①当∠AEC=90°时,易知△CBE≌△CAE≌△CAD,得∠BCE=30°, 解△ABH即可得到结论. ②当∠CAE=90°时,易知△CDA∽△BCA,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A作
16、AH⊥BC于H.由∠D=∠BCD=90°,得四边形ADCH为矩形. 在△BAH中,AB=2,∠BHA=90°,AH=y,HB=,∴, 则 (2)取CD中点T,联结TE,则TE是梯形中位线,得ET∥AD,ET⊥CD,∴∠AET=∠B=70°. 又AD=AE=1,∴∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,∴∠AEC=70°+35°=105°. (3)分两种状况讨论:①当∠AEC=90°时,易知△CBE≌△CAE≌△CAD,得∠BCE=30°, 则在△ABH中,∠B=60°,∠AHB=90°,AB=2,得BH=1,于是BC=2. ②当
17、∠CAE=90°时,易知△CDA∽△BCA,又, 则(舍负) 易知∠ACE<90°,因此边BC长为. 综上所述:边BC长为2或. 点睛:本题是四边形综合题.考察了梯形中位线,相似三角形判定与性质.解题关键是掌握梯形中常见辅助线作法. 5.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)请问EG与CG存在怎样数量关系,并证明你结论; (2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中结论与否仍然成立?若成立,请给出证明;若不成立,请阐明理由. (3)将
18、图①中△BEF绕B点旋转任意角度,如图③所示,再连接对应线段,问(1)中结论与否仍然成立?(请直接写出成果,不必写出理由) 【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立 【解析】 【分析】 (1)运用直角三角形斜边上中线等于斜边二分之一,可证出CG=EG. (2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最终证出CG=EG. (3)结论仍然成立. 【详解】 (1)CG=EG.理由如下: ∵四边形ABCD是正
19、方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF中点,∴CG=FD,同理.在Rt△DEF中,EG=FD,∴CG=EG. (2)(1)中结论仍然成立,即EG=CG. 证法一:连接AG,过G点作MN⊥AD于M,与EF延长线交于N点. 在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG; 在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG. ∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△E
20、NG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG. 证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF. 在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE ∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形. ∵MG=CG,∴EG=MC,∴EG=CG
21、. (3)(1)中结论仍然成立.理由如下: 过F作CD平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N. 由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又由于BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC ∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形. ∵G为CM中点,∴EG=CG,EG⊥CG 【点睛】 本题是四边形综合题.(1)关键是运用直角三角形斜边上中线等于斜边二分之一解答;(2)关键是运用了直角三角形斜边上中线等于斜边二分之一性质、全等
22、三角形判定和性质解答. 6.图1、图2是两张形状、大小完全相似方格纸,方格纸中每个小正方形边长均为1,每个小正方形顶点叫做格点. (1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°; (2)在图2中以格点为顶点画一种正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积4倍,并将正方形ABCD分割成以格点为顶点四个全等直角三角形和一种正方形,且正方形ABCD面积没有剩余(画出一种即可). 【答案】(1)作图参见解析;(2)作图参见解析. 【解析】 试题分析:(1)过点O向线段OM作垂线,此直线与格点交点为N,连接MN即可;(2)根据
23、勾股定理画出图形即可. 试题解析:(1)过点O向线段OM作垂线,此直线与格点交点为N,连接MN,如图1所示; (2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3: 考点:1.作图﹣应用与设计作图;2.勾股定理. 7.已知AD是△ABC中线P是线段AD上一点(不与点A、D重叠),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC中点,AD与EF交于点M; (1)如图1,当AB=AC时,求证:四边形EGHF是矩形; (2)如图2,当点P与点M重叠时,在不添加任何辅助线条件下,写出所有与△BPE面积相等三角形(不包括
24、△BPE自身). 【答案】(1)见解析;(2)△APE、△APF、△CPF、△PGH. 【解析】 【分析】 (1)由三角形中位线定理得出EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,推出EF∥GH,EF=GH,证得四边形EGHF是平行四边形,证得EF⊥AP,推出EF⊥EG,即可得出结论; (2)由△APE与△BPE底AE=BE,又等高,得出S△APE=S△BPE,由△APE与△APF底EP=FP,又等高,得出S△APE=S△APF,由△APF与△CPF底AF=CF,又等高,得出S△APF=S△CPF,证得△PGH底边GH上高等于△AEF底边EF上高二分之一,推出S△PG
25、H=S△AEF=S△APF,即可得出成果. 【详解】 (1)证明:∵E、F、G、H分别是AB、AC、PB、PC中点, ∴EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC, ∴EF∥GH,EF=GH, ∴四边形EGHF是平行四边形, ∵AB=AC, ∴AD⊥BC, ∴EF⊥AP, ∵EG∥AP, ∴EF⊥EG, ∴平行四边形EGHF是矩形; (2)∵PE是△APB中线, ∴△APE与△BPE底AE=BE,又等高, ∴S△APE=S△BPE, ∵AP是△AEF中线, ∴△APE与△APF底EP=FP,又等高, ∴S△APE=S△APF, ∴S△APF=
26、S△BPE, ∵PF是△APC中线, ∴△APF与△CPF底AF=CF,又等高, ∴S△APF=S△CPF, ∴S△CPF=S△BPE, ∵EF∥GH∥BC,E、F、G、H分别是AB、AC、PB、PC中点, ∴△AEF底边EF上高等于△ABC底边BC上高二分之一,△PGH底边GH上高等于△PBC底边BC上高二分之一, ∴△PGH底边GH上高等于△AEF底边EF上高二分之一, ∵GH=EF, ∴S△PGH=S△AEF=S△APF, 综上所述,与△BPE面积相等三角形为:△APE、△APF、△CPF、△PGH. 【点睛】 本题考察了矩形判定与性质、平行四边形判定、三角形中位
27、线定理、平行线性质、三角形面积计算等知识,纯熟掌握三角形中位线定理是处理问题关键. 8.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD延长线于G. (1)求证:AE=EG; (2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG; (3)如图3,取GF中点M,若AB=5,求EM长. 【答案】(1)证明见解析(2)证明见解析(3) 【解析】 【分析】 (1)根据平行线性质和等腰三角形三线合一性质得:∠CAD=∠G,可得AE=EG; (2)作辅助线,证明△BEF≌△GEC(SAS),可得结论; (3)
28、如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=AC,计算可得结论. 【详解】 证明:(1)如图1,过E作EH⊥CF于H, ∵AD⊥BC, ∴EH∥AD, ∴∠CEH=∠CAD,∠HEF=∠G, ∵CE=EF, ∴∠CEH=∠HEF, ∴∠CAD=∠G, ∴AE=EG; (2)如图2,连接GC, ∵AC=BC,AD⊥BC, ∴BD=CD, ∴AG是BC垂直平分线, ∴GC=GB, ∴∠GBF=∠BCG, ∵BG=BF, ∴GC=BE, ∵CE=EF, ∴∠CEF=180°﹣2∠F, ∵BG=BF, ∴∠GBF=180
29、°﹣2∠F, ∴∠GBF=∠CEF, ∴∠CEF=∠BCG, ∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE, ∴∠GCE=∠F, 在△BEF和△GCE中, , ∴△BEF≌△GEC(SAS), ∴BE=EG; (3)如图3,连接DM,取AC中点N,连接DN, 由(1)得AE=EG, ∴∠GAE=∠AGE, 在Rt△ACD中,N为AC中点, ∴DN=AC=AN,∠DAN=∠ADN, ∴∠ADN=∠AGE, ∴DN∥GF, 在Rt△GDF中,M是FG中点, ∴DM=FG=GM,∠GDM=∠AGE, ∴∠GDM=∠DAN, ∴DM∥AE, ∴四
30、边形DMEN是平行四边形, ∴EM=DN=AC, ∵AC=AB=5, ∴EM=. 【点睛】 本题是三角形综合题,重要考察了全等三角形判定与性质,直角三角形斜边中线性质,等腰三角形性质和判定,平行四边形性质和判定等知识,解题关键是作辅助线,并纯熟掌握全等三角形判定措施,尤其是第三问,辅助线作法是关键. 9.既有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F. (1)求AE、EF位置关系; (2)求线段B′C长,并求△B′EC面积. 【答案】(1)
31、见解析;(2)S△B′EC=. 【解析】 【分析】 (1)由折线法及点E是BC中点,可证得△B'EC是等腰三角形,再有条件证明∠AEF=90°即可得到AE⊥EF; (2)连接BB′,通过折叠,可知∠EBB′=∠EB′B,由E是BC中点,可得EB′=EC,∠ECB′=∠EB′C,从而可证△BB′C为直角三角形,在Rt△AOB和Rt△BOE中,可将OB,BB′长求出,在Rt△BB′C中,根据勾股定理可将B′C值求出. 【详解】 (1)由折线法及点E是BC中点, ∴EB=EB′=EC,∠AEB=∠AEB′, ∴△B'EC是等腰三角形, 又∵EF⊥B′C ∴EF为∠B'EC角平分线
32、即∠B′EF=∠FEC, ∴∠AEF=180°﹣(∠AEB+∠CEF)=90°,即∠AEF=90°, 即AE⊥EF; (2)连接BB'交AE于点O,由折线法及点E是BC中点, ∴EB=EB′=EC, ∴∠EBB′=∠EB′B,∠ECB′=∠EB′C; 又∵△BB'C三内角之和为180°, ∴∠BB'C=90°; ∵点B′是点B有关直线AE对称点, ∴AE垂直平分BB′; 在Rt△AOB和Rt△BOE中,BO2=AB2﹣AO2=BE2﹣(AE﹣AO)2 将AB=4cm,BE=3cm,AE=5cm, ∴AO= cm, ∴BO==cm, ∴BB′=2BO=cm, ∴在
33、Rt△BB'C中,B′C==cm, 由题意可知四边形OEFB′是矩形, ∴EF=OB′=, ∴S△B′EC=. 【点睛】 考察图形折叠变化及三角形内角和定理勾股定理和矩形性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称性质,折叠前后图形形状和大小不变,只是位置变化. 10.(1)问题发现: 如图①,在等边三角形ABC中,点M为BC边上异于B、C一点,以AM为边作等边三角形AMN,连接CN,NC与AB位置关系为 ; (2)深入探究: 如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C一点,以AM为边作等腰三角形AMN,使∠A
34、BC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN数量关系,并阐明理由; (3)拓展延伸: 如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C一点,以AM为边作正方形AMEF,点N为正方形AMEF中点,连接CN,若BC=10,CN=,试求EF长. 【答案】(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3); 【解析】 分析:(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
35、 (2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形性质得到,运用等腰三角形性质得到∠BAC=∠MAN,根据相似三角形性质即可得到结论; (3)如图3,连接AB,AN,根据正方形性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案. 详解:(1)NC∥AB,理由如下: ∵△ABC与△MN是等边三角形, ∴AB=AC,AM=AN,∠BAC=∠MAN=60°, ∴∠BAM=∠CAN, 在△ABM与△ACN中, , ∴△ABM≌△ACN(SAS), ∴∠
36、B=∠ACN=60°, ∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°, ∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°, ∴CN∥AB; (2)∠ABC=∠ACN,理由如下: ∵=1且∠ABC=∠AMN, ∴△ABC~△AMN ∴, ∵AB=BC, ∴∠BAC=(180°﹣∠ABC), ∵AM=MN ∴∠MAN=(180°﹣∠AMN), ∵∠ABC=∠AMN, ∴∠BAC=∠MAN, ∴∠BAM=∠CAN, ∴△ABM~△ACN, ∴∠ABC=∠ACN; (3)如图3,连接AB,AN, ∵四
37、边形ADBC,AMEF为正方形, ∴∠ABC=∠BAC=45°,∠MAN=45°, ∴∠BAC﹣∠MAC=∠MAN﹣∠MAC 即∠BAM=∠CAN, ∵, ∴, ∴△ABM~△ACN ∴, ∴=cos45°=, ∴, ∴BM=2, ∴CM=BC﹣BM=8, 在Rt△AMC, AM=, ∴EF=AM=2. 点睛:本题是四边形综合题目,考察了正方形性质、等边三角形性质、等腰三角形性质、全等三角形性质定理和判定定理、相似三角形性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是处理问题关键. 11.如图1,矩形ABCD中,AB=8,
38、AD=6;点E是对角线BD上一动点,连接CE,作EF⊥CE交AB边于点F,以CE和EF为邻边作矩形CEFG,作其对角线相交于点H. (1)①如图2,当点F与点B重叠时,CE= ,CG= ; ②如图3,当点E是BD中点时,CE= ,CG= ; (2)在图1,连接BG,当矩形CEFG伴随点E运动而变化时,猜想△EBG形状?并加以证明; (3)在图1,值与否会发生变化?若不变,求出它值;若变化,阐明理由; (4)在图1,设DE长为x,矩形CEFG面积为S,试求S有关x函数关系式,并直接写出x取值范围. 【答案】(1), ,5, ;(2)△EBG是直角三角形,理由详
39、见解析;(3) ;(4)S=x2﹣x+48(0≤x≤). 【解析】 【分析】 (1)①运用面积法求出CE,再运用勾股定理求出EF即可;②运用直角三角形斜边中线定理求出CE,再运用相似三角形性质求出EF即可; (2)根据直角三角形判定措施:假如一种三角形一边上中线等于这条边二分之一,则这个三角形是直角三角形即可判断; (3)只要证明△DCE∽△BCG,即可处理问题; (4)运用相似多边形性质构建函数关系式即可; 【详解】 (1)①如图2中, 在Rt△BAD中,BD==10, ∵S△BCD=•CD•BC=•BD•CE, ∴CE=.CG=BE=. ②如图3中,过点E作MN
40、⊥AM交AB于N,交CD于M. ∵DE=BE, ∴CE=BD=5, ∵△CME∽△ENF, ∴, ∴CG=EF=, (2)结论:△EBG是直角三角形. 理由:如图1中,连接BH. 在Rt△BCF中,∵FH=CH, ∴BH=FH=CH, ∵四边形EFGC是矩形, ∴EH=HG=HF=HC, ∴BH=EH=HG, ∴△EBG是直角三角形. (3)F如图1中,∵HE=HC=HG=HB=HF, ∴C、E、F、B、G五点共圆, ∵EF=CG, ∴∠CBG=∠EBF, ∵CD∥AB, ∴∠EBF=∠CDE, ∴∠CBG=∠CDE, ∵∠DCB=∠ECG=9
41、0°, ∴∠DCE=∠BCG, ∴△DCE∽△BCG, ∴. (4)由(3)可知: , ∴矩形CEFG∽矩形ABCD, ∴, ∵CE2=(-x)2+)2,S矩形ABCD=48, ∴S矩形CEFG= [(-x)2+()2]. ∴矩形CEFG面积S=x2-x+48(0≤x≤). 【点睛】 本题考察相似三角形综合题、矩形性质、相似三角形判定和性质、勾股定理、直角三角形判定和性质、相似多边形性质和判定等知识,解题关键是灵活运用所学知识处理问题,学会添加常用辅助线,构造相似三角形或直角三角形处理问题,属于中考压轴题. 12.小明在矩形纸片上画正三角形,他做法是:①对折矩形纸
42、片ABCD(AB>BC),使AB与DC重叠,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上点P处,再折出PB、PC,最终用笔画出△PBC(图1). (1)求证:图1中 PBC是正三角形: (2)如图2,小明在矩形纸片HIJK上又画了一种正三角形IMN,其中IJ=6cm, 且HM=JN. ①求证:IH=IJ ②祈求出NJ长; (3)小明发现:在矩形纸片中,若一边长为6cm,当另一边长度a变化时,在矩形纸片上总能画出最大正三角形,但位置会有所不一样.请根据小明发现,画出不一样情形示意图(作图工具不限,能阐明问题即可),并直接写出对应a取值范围. 【答案】(1
43、证明见解析;(2)①证明见解析;②12-6(3)3<a<4,a>4 【解析】 分析:(1)由折叠性质和垂直平分线性质得出PB=PC,PB=CB,得出PB=PC=CB即可; (2)①运用“HL”证Rt△IHM≌Rt△IJN即可得;②IJ上取一点Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x,则IQ=QN=2x、QJ=x,根据IJ=IQ+QJ求出x即可得; (3)由等边三角形性质、直角三角形性质、勾股定理进行计算,画出图形即可. (1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB与DC重叠,得到折痕EF ∴PB
44、PC ∵沿折痕BG折叠纸片,使点C落在EF上点P处 ∴PB=BC ∴PB=PC=BC ∴△PBC是正三角形: (2)证明:①如图 ∵矩形AHIJ ∴∠H=∠J=90° ∵△MNJ是等边三角形 ∴MI=NI 在Rt△MHI和Rt△JNI中 ∴Rt△MHI≌Rt△JNI(HL) ∴HI=IJ ②在线段IJ上取点Q,使IQ=NQ ∵Rt△IHM≌Rt△IJN, ∴∠HIM=∠JIN, ∵∠HIJ=90°、∠MIN=60°, ∴∠HIM=∠JIN=15°, 由QI=QN知∠JIN=∠QNI=15°, ∴∠NQJ=30°, 设NJ=x,则IQ=QN
45、2x,QJ=x, ∵IJ=6cm, ∴2x+x=6, ∴x=12-6,即NJ=12-6(cm). (3)分三种状况: ①如图: 设等边三角形边长为b,则0<b≤6, 则tan60°=, ∴a=, ∴0<b≤=; ②如图 当DF与DC重叠时,DF=DE=6, ∴a=sin60°×DE==, 当DE与DA重叠时,a=, ∴<a<; ③如图 ∵△DEF是等边三角形 ∴∠FDC=30° ∴DF= ∴a> 点睛:本题是四边形综合题目,考察了折叠性质、等边三角形判定与性质、旋转性质、直角三角形性质、正方形性质、全等三角形判定与性质等知识;本题综合性强,
46、难度较大. 13.如图,在平面直角坐标系xOy中,四边形OABC顶点A在x轴正半轴上,OA=4,OC=2,点D、E、F、G分别为边OA、AB、BC、CO中点,连结DE、EF、FG、GD. (1)若点C在y轴正半轴上,当点B坐标为(2,4)时,判断四边形DEFG形状,并阐明理由. (2)若点C在第二象限运动,且四边形DEFG为菱形时,求点四边形OABC对角线OB长度取值范围. (3)若在点C运动过程中,四边形DEFG一直为正方形,当点C从X轴负半轴通过Y轴正半轴,运动至X轴正半轴时,直接写出点B运动途径长. 【答案】(1)正方形(2)(3)2π 【解析】 分析:(1)连接O
47、B,AC,阐明OB⊥AC,OB=AC,可得四边形DEFG是正方形. (2)由四边形DEFG是菱形,可得OB=AC,当点C在y轴上时,AC=,当点C在x轴上时,AC=6, 故可得结论; (3)根据题意计算弧长即可. 详解:(1)正方形,如图1,证明连接OB,AC,阐明OB⊥AC,OB=AC,可得四边形DEFG是正方形. (2) 如图2,由四边形DEFG是菱形,可得OB=AC,当点C在y轴上时,AC=,当点C在x轴上时,AC=6, ∴ ; (3)2π. 如图3,当四边形DEFG是正方形时,OB⊥AC,且OB=AC,构造△OBE≌△ACO,可得B点在以E(0,4)为圆心,2为半径圆上运
48、动. 因此当C点从x轴负半轴到正半轴运动时,B点运动途径为2 . 图1 图2 图3 点睛:本题重要考察了正方形判定,菱形性质以及弧长计算.灵活运用正方形判定定理和菱形性质运用是解题关键. 14.在正方形ABCD中,动点E,F分别从D,C两点同步出发,以相似速度在直线DC,CB上移动. (1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF位置关系,并阐明理由; (2)如图②,当E,F分别移动到边DC,CB延长线上时,连接AE和DF,(1)中结论还成立吗?(
49、请你直接回答“是”或“否”,不须证明) (3)如图③,当E,F分别在边CD,BC延长线上移动时,连接AE,DF,(1)中结论还成立吗?请阐明理由; (4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F移动,使得点P也随之运动,请你画出点P运动途径草图.若AD=2,试求出线段CP最小值. 【答案】(1)AE=DF,AE⊥DF; (2)是; (3)成立,理由见解析; (4)CP=QC﹣QP=. 【解析】 试题分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形性质得AE=DF,∠DAE=∠CDF,再由等角余角相等可得AE⊥
50、DF; (2)是.四边形ABCD是正方形,因此AD=DC,∠ADE=∠DCF=90°,DE=CF,因此△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,因此AE⊥DF; (3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角余角相等可得AE⊥DF; (4)由于点P在运动中保持∠APD=90°,因此点P途径是一段以AD为直径弧,设AD中点为Q,连接QC交弧于点P,此时CP长度最小,再由勾股定理可得QC长,再求CP即可. 试题解析:(1)AE=DF,AE⊥DF. 理由:∵四边形ABCD是






